MakeItFrom.com
Menu (ESC)

SAE-AISI 50B60 Steel vs. 443.0 Aluminum

SAE-AISI 50B60 steel belongs to the iron alloys classification, while 443.0 aluminum belongs to the aluminum alloys. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is SAE-AISI 50B60 steel and the bottom bar is 443.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180 to 190
41
Elastic (Young's, Tensile) Modulus, GPa 190
71
Elongation at Break, % 12 to 20
5.6
Fatigue Strength, MPa 240 to 330
55
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 72
27
Shear Strength, MPa 380
96
Tensile Strength: Ultimate (UTS), MPa 610 to 630
150
Tensile Strength: Yield (Proof), MPa 350 to 530
65

Thermal Properties

Latent Heat of Fusion, J/g 250
470
Maximum Temperature: Mechanical, °C 410
180
Melting Completion (Liquidus), °C 1450
630
Melting Onset (Solidus), °C 1410
580
Specific Heat Capacity, J/kg-K 470
900
Thermal Conductivity, W/m-K 45
150
Thermal Expansion, µm/m-K 12
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.2
38
Electrical Conductivity: Equal Weight (Specific), % IACS 8.3
130

Otherwise Unclassified Properties

Base Metal Price, % relative 2.0
9.5
Density, g/cm3 7.8
2.7
Embodied Carbon, kg CO2/kg material 1.4
8.0
Embodied Energy, MJ/kg 19
150
Embodied Water, L/kg 48
1120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 71 to 100
6.9
Resilience: Unit (Modulus of Resilience), kJ/m3 330 to 750
30
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 24
52
Strength to Weight: Axial, points 22 to 23
16
Strength to Weight: Bending, points 20 to 21
23
Thermal Diffusivity, mm2/s 12
61
Thermal Shock Resistance, points 20
6.9

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
90.7 to 95.5
Boron (B), % 0.00050 to 0.0030
0
Carbon (C), % 0.56 to 0.64
0
Chromium (Cr), % 0.4 to 0.6
0 to 0.25
Copper (Cu), % 0
0 to 0.6
Iron (Fe), % 97.3 to 98.1
0 to 0.8
Magnesium (Mg), % 0
0 to 0.050
Manganese (Mn), % 0.75 to 1.0
0 to 0.5
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0.15 to 0.35
4.5 to 6.0
Sulfur (S), % 0 to 0.040
0
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.35