MakeItFrom.com
Menu (ESC)

SAE-AISI 50B60 Steel vs. EN 1.0644 Steel

Both SAE-AISI 50B60 steel and EN 1.0644 steel are iron alloys. They have a very high 99% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 50B60 steel and the bottom bar is EN 1.0644 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180 to 190
200
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 12 to 20
17
Fatigue Strength, MPa 240 to 330
380
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 72
73
Shear Strength, MPa 380
420
Tensile Strength: Ultimate (UTS), MPa 610 to 630
690
Tensile Strength: Yield (Proof), MPa 350 to 530
570

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 410
400
Melting Completion (Liquidus), °C 1450
1460
Melting Onset (Solidus), °C 1410
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 45
47
Thermal Expansion, µm/m-K 12
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.2
7.4
Electrical Conductivity: Equal Weight (Specific), % IACS 8.3
8.5

Otherwise Unclassified Properties

Base Metal Price, % relative 2.0
2.4
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 1.4
1.8
Embodied Energy, MJ/kg 19
24
Embodied Water, L/kg 48
50

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 71 to 100
110
Resilience: Unit (Modulus of Resilience), kJ/m3 330 to 750
870
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 22 to 23
24
Strength to Weight: Bending, points 20 to 21
22
Thermal Diffusivity, mm2/s 12
13
Thermal Shock Resistance, points 20
22

Alloy Composition

Aluminum (Al), % 0
0.010 to 0.050
Boron (B), % 0.00050 to 0.0030
0
Carbon (C), % 0.56 to 0.64
0.16 to 0.22
Chromium (Cr), % 0.4 to 0.6
0 to 0.3
Copper (Cu), % 0
0 to 0.3
Iron (Fe), % 97.3 to 98.1
96.1 to 98.4
Manganese (Mn), % 0.75 to 1.0
1.3 to 1.7
Molybdenum (Mo), % 0
0 to 0.080
Nickel (Ni), % 0
0 to 0.4
Niobium (Nb), % 0
0 to 0.070
Nitrogen (N), % 0
0 to 0.020
Phosphorus (P), % 0 to 0.035
0 to 0.030
Silicon (Si), % 0.15 to 0.35
0.1 to 0.5
Sulfur (S), % 0 to 0.040
0 to 0.035
Titanium (Ti), % 0
0 to 0.050
Vanadium (V), % 0
0.080 to 0.15