MakeItFrom.com
Menu (ESC)

SAE-AISI 50B60 Steel vs. C68400 Brass

SAE-AISI 50B60 steel belongs to the iron alloys classification, while C68400 brass belongs to the copper alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 50B60 steel and the bottom bar is C68400 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180 to 190
150
Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 12 to 20
18
Poisson's Ratio 0.29
0.31
Shear Modulus, GPa 72
41
Shear Strength, MPa 380
330
Tensile Strength: Ultimate (UTS), MPa 610 to 630
540
Tensile Strength: Yield (Proof), MPa 350 to 530
310

Thermal Properties

Latent Heat of Fusion, J/g 250
210
Maximum Temperature: Mechanical, °C 410
130
Melting Completion (Liquidus), °C 1450
840
Melting Onset (Solidus), °C 1410
820
Specific Heat Capacity, J/kg-K 470
400
Thermal Conductivity, W/m-K 45
66
Thermal Expansion, µm/m-K 12
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.2
87
Electrical Conductivity: Equal Weight (Specific), % IACS 8.3
99

Otherwise Unclassified Properties

Base Metal Price, % relative 2.0
23
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 1.4
2.7
Embodied Energy, MJ/kg 19
47
Embodied Water, L/kg 48
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 71 to 100
81
Resilience: Unit (Modulus of Resilience), kJ/m3 330 to 750
460
Stiffness to Weight: Axial, points 13
7.5
Stiffness to Weight: Bending, points 24
20
Strength to Weight: Axial, points 22 to 23
19
Strength to Weight: Bending, points 20 to 21
19
Thermal Diffusivity, mm2/s 12
21
Thermal Shock Resistance, points 20
18

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
0 to 0.5
Boron (B), % 0.00050 to 0.0030
0.0010 to 0.030
Carbon (C), % 0.56 to 0.64
0
Chromium (Cr), % 0.4 to 0.6
0
Copper (Cu), % 0
59 to 64
Iron (Fe), % 97.3 to 98.1
0 to 1.0
Lead (Pb), % 0
0 to 0.090
Manganese (Mn), % 0.75 to 1.0
0.2 to 1.5
Nickel (Ni), % 0
0 to 0.5
Phosphorus (P), % 0 to 0.035
0.030 to 0.3
Silicon (Si), % 0.15 to 0.35
1.5 to 2.5
Sulfur (S), % 0 to 0.040
0
Tin (Sn), % 0
0 to 0.5
Zinc (Zn), % 0
28.6 to 39.3
Residuals, % 0
0 to 0.5