MakeItFrom.com
Menu (ESC)

SAE-AISI 5120 Steel vs. C19500 Copper

SAE-AISI 5120 steel belongs to the iron alloys classification, while C19500 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 5120 steel and the bottom bar is C19500 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 16
2.3 to 38
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 73
44
Shear Strength, MPa 310
260 to 360
Tensile Strength: Ultimate (UTS), MPa 500
380 to 640
Tensile Strength: Yield (Proof), MPa 320
120 to 600

Thermal Properties

Latent Heat of Fusion, J/g 250
210
Maximum Temperature: Mechanical, °C 420
200
Melting Completion (Liquidus), °C 1460
1090
Melting Onset (Solidus), °C 1420
1090
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 47
200
Thermal Expansion, µm/m-K 12
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.2
50 to 56
Electrical Conductivity: Equal Weight (Specific), % IACS 8.2
50 to 57

Otherwise Unclassified Properties

Base Metal Price, % relative 2.1
31
Density, g/cm3 7.8
8.9
Embodied Carbon, kg CO2/kg material 1.4
2.7
Embodied Energy, MJ/kg 19
42
Embodied Water, L/kg 49
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 71
14 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 280
59 to 1530
Stiffness to Weight: Axial, points 13
7.3
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 18
12 to 20
Strength to Weight: Bending, points 18
13 to 18
Thermal Diffusivity, mm2/s 13
58
Thermal Shock Resistance, points 16
13 to 23

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
0 to 0.020
Carbon (C), % 0.17 to 0.22
0
Chromium (Cr), % 0.7 to 0.9
0
Cobalt (Co), % 0
0.3 to 1.3
Copper (Cu), % 0
94.9 to 98.6
Iron (Fe), % 97.6 to 98.3
1.0 to 2.0
Lead (Pb), % 0
0 to 0.020
Manganese (Mn), % 0.7 to 0.9
0
Phosphorus (P), % 0 to 0.035
0.010 to 0.35
Silicon (Si), % 0.15 to 0.35
0
Sulfur (S), % 0 to 0.040
0
Tin (Sn), % 0
0.1 to 1.0
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.2