MakeItFrom.com
Menu (ESC)

SAE-AISI 52100 Steel vs. Nickel 908

SAE-AISI 52100 steel belongs to the iron alloys classification, while nickel 908 belongs to the nickel alloys. They have 42% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 52100 steel and the bottom bar is nickel 908.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
180
Elongation at Break, % 10 to 20
11
Fatigue Strength, MPa 250 to 340
450
Poisson's Ratio 0.29
0.3
Shear Modulus, GPa 72
70
Shear Strength, MPa 370 to 420
800
Tensile Strength: Ultimate (UTS), MPa 590 to 2010
1340
Tensile Strength: Yield (Proof), MPa 360 to 560
930

Thermal Properties

Latent Heat of Fusion, J/g 250
290
Maximum Temperature: Mechanical, °C 430
920
Melting Completion (Liquidus), °C 1450
1430
Melting Onset (Solidus), °C 1410
1380
Specific Heat Capacity, J/kg-K 470
460
Thermal Conductivity, W/m-K 47
11
Thermal Expansion, µm/m-K 12 to 13
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 2.4
50
Density, g/cm3 7.8
8.3
Embodied Carbon, kg CO2/kg material 1.5
9.3
Embodied Energy, MJ/kg 20
140
Embodied Water, L/kg 51
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 54 to 310
140
Resilience: Unit (Modulus of Resilience), kJ/m3 350 to 840
2340
Stiffness to Weight: Axial, points 13
12
Stiffness to Weight: Bending, points 24
23
Strength to Weight: Axial, points 21 to 72
45
Strength to Weight: Bending, points 20 to 45
33
Thermal Diffusivity, mm2/s 13
2.9
Thermal Shock Resistance, points 19 to 61
61

Alloy Composition

Aluminum (Al), % 0
0.75 to 1.3
Boron (B), % 0
0 to 0.012
Carbon (C), % 0.93 to 1.1
0 to 0.030
Chromium (Cr), % 1.4 to 1.6
3.8 to 4.5
Cobalt (Co), % 0
0 to 0.5
Copper (Cu), % 0
0 to 0.5
Iron (Fe), % 96.5 to 97.3
35.6 to 44.6
Manganese (Mn), % 0.25 to 0.45
0 to 1.0
Nickel (Ni), % 0
47 to 51
Niobium (Nb), % 0
2.7 to 3.3
Phosphorus (P), % 0 to 0.025
0 to 0.015
Silicon (Si), % 0.15 to 0.35
0 to 0.5
Sulfur (S), % 0 to 0.015
0 to 0.0050
Titanium (Ti), % 0
1.2 to 1.8