MakeItFrom.com
Menu (ESC)

SAE-AISI 6150 Steel vs. C43400 Brass

SAE-AISI 6150 steel belongs to the iron alloys classification, while C43400 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 6150 steel and the bottom bar is C43400 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 15 to 23
3.0 to 49
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 73
42
Shear Strength, MPa 400 to 730
250 to 390
Tensile Strength: Ultimate (UTS), MPa 630 to 1200
310 to 690
Tensile Strength: Yield (Proof), MPa 420 to 1160
110 to 560

Thermal Properties

Latent Heat of Fusion, J/g 250
190
Maximum Temperature: Mechanical, °C 420
170
Melting Completion (Liquidus), °C 1460
1020
Melting Onset (Solidus), °C 1410
990
Specific Heat Capacity, J/kg-K 470
380
Thermal Conductivity, W/m-K 46
140
Thermal Expansion, µm/m-K 12 to 13
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.3
31
Electrical Conductivity: Equal Weight (Specific), % IACS 8.4
32

Otherwise Unclassified Properties

Base Metal Price, % relative 2.3
28
Density, g/cm3 7.8
8.6
Embodied Carbon, kg CO2/kg material 2.0
2.7
Embodied Energy, MJ/kg 28
44
Embodied Water, L/kg 51
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130 to 180
19 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 460 to 3590
57 to 1420
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 22 to 43
10 to 22
Strength to Weight: Bending, points 21 to 32
12 to 20
Thermal Diffusivity, mm2/s 13
41
Thermal Shock Resistance, points 20 to 38
11 to 24

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0.48 to 0.53
0
Chromium (Cr), % 0.8 to 1.1
0
Copper (Cu), % 0
84 to 87
Iron (Fe), % 96.7 to 97.7
0 to 0.050
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0.7 to 0.9
0
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0.15 to 0.35
0
Sulfur (S), % 0 to 0.040
0
Tin (Sn), % 0
0.4 to 1.0
Vanadium (V), % 0.15 to 0.3
0
Zinc (Zn), % 0
11.4 to 15.6
Residuals, % 0
0 to 0.5