MakeItFrom.com
Menu (ESC)

SAE-AISI 8627 Steel vs. S32050 Stainless Steel

Both SAE-AISI 8627 steel and S32050 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 50% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 8627 steel and the bottom bar is S32050 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150
220
Elastic (Young's, Tensile) Modulus, GPa 190
210
Elongation at Break, % 23
46
Fatigue Strength, MPa 230
340
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
81
Shear Strength, MPa 320
540
Tensile Strength: Ultimate (UTS), MPa 500
770
Tensile Strength: Yield (Proof), MPa 330
370

Thermal Properties

Latent Heat of Fusion, J/g 250
310
Maximum Temperature: Mechanical, °C 410
1100
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1420
1410
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 38
12
Thermal Expansion, µm/m-K 11
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.3
1.9
Electrical Conductivity: Equal Weight (Specific), % IACS 8.3
2.1

Otherwise Unclassified Properties

Base Metal Price, % relative 2.6
31
Density, g/cm3 7.8
8.0
Embodied Carbon, kg CO2/kg material 1.5
6.0
Embodied Energy, MJ/kg 20
81
Embodied Water, L/kg 50
210

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
290
Resilience: Unit (Modulus of Resilience), kJ/m3 280
330
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 18
27
Strength to Weight: Bending, points 18
23
Thermal Diffusivity, mm2/s 10
3.3
Thermal Shock Resistance, points 17
17

Alloy Composition

Carbon (C), % 0.25 to 0.3
0 to 0.030
Chromium (Cr), % 0.4 to 0.6
22 to 24
Copper (Cu), % 0
0 to 0.4
Iron (Fe), % 96.8 to 98
43.1 to 51.8
Manganese (Mn), % 0.7 to 0.9
0 to 1.5
Molybdenum (Mo), % 0.15 to 0.25
6.0 to 6.6
Nickel (Ni), % 0.4 to 0.7
20 to 23
Nitrogen (N), % 0
0.21 to 0.32
Phosphorus (P), % 0 to 0.035
0 to 0.035
Silicon (Si), % 0.15 to 0.35
0 to 1.0
Sulfur (S), % 0 to 0.040
0 to 0.020