MakeItFrom.com
Menu (ESC)

SAE-AISI 9255 Steel vs. C17200 Copper

SAE-AISI 9255 steel belongs to the iron alloys classification, while C17200 copper belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 9255 steel and the bottom bar is C17200 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 21
1.1 to 37
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 72
45
Shear Strength, MPa 430
330 to 780
Tensile Strength: Ultimate (UTS), MPa 680
480 to 1380
Tensile Strength: Yield (Proof), MPa 390
160 to 1250

Thermal Properties

Latent Heat of Fusion, J/g 280
230
Maximum Temperature: Mechanical, °C 400
280
Melting Completion (Liquidus), °C 1430
980
Melting Onset (Solidus), °C 1390
870
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 46
110
Thermal Expansion, µm/m-K 13
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.4
22
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
23

Otherwise Unclassified Properties

Density, g/cm3 7.7
8.8
Embodied Carbon, kg CO2/kg material 1.5
9.4
Embodied Energy, MJ/kg 20
150
Embodied Water, L/kg 46
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
4.2 to 500
Resilience: Unit (Modulus of Resilience), kJ/m3 400
110 to 5720
Stiffness to Weight: Axial, points 13
7.6
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 24
15 to 44
Strength to Weight: Bending, points 22
16 to 31
Thermal Diffusivity, mm2/s 13
31
Thermal Shock Resistance, points 21
16 to 46

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
0 to 0.2
Beryllium (Be), % 0
1.8 to 2.0
Carbon (C), % 0.51 to 0.59
0
Copper (Cu), % 0
96.1 to 98
Iron (Fe), % 96.2 to 97
0 to 0.4
Manganese (Mn), % 0.7 to 1.0
0
Nickel (Ni), % 0
0.2 to 0.6
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 1.8 to 2.2
0 to 0.2
Sulfur (S), % 0 to 0.040
0
Residuals, % 0
0 to 0.5