MakeItFrom.com
Menu (ESC)

SAE-AISI 9255 Steel vs. C48600 Brass

SAE-AISI 9255 steel belongs to the iron alloys classification, while C48600 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 9255 steel and the bottom bar is C48600 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
100
Elongation at Break, % 21
20 to 25
Poisson's Ratio 0.29
0.31
Shear Modulus, GPa 72
39
Shear Strength, MPa 430
180 to 230
Tensile Strength: Ultimate (UTS), MPa 680
280 to 360
Tensile Strength: Yield (Proof), MPa 390
110 to 170

Thermal Properties

Latent Heat of Fusion, J/g 280
170
Maximum Temperature: Mechanical, °C 400
120
Melting Completion (Liquidus), °C 1430
900
Melting Onset (Solidus), °C 1390
890
Specific Heat Capacity, J/kg-K 480
380
Thermal Conductivity, W/m-K 46
110
Thermal Expansion, µm/m-K 13
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.4
25
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
28

Otherwise Unclassified Properties

Base Metal Price, % relative 2.0
24
Density, g/cm3 7.7
8.1
Embodied Carbon, kg CO2/kg material 1.5
2.8
Embodied Energy, MJ/kg 20
47
Embodied Water, L/kg 46
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
55 to 59
Resilience: Unit (Modulus of Resilience), kJ/m3 400
61 to 140
Stiffness to Weight: Axial, points 13
7.1
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 24
9.5 to 12
Strength to Weight: Bending, points 22
12 to 14
Thermal Diffusivity, mm2/s 13
36
Thermal Shock Resistance, points 21
9.3 to 12

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Arsenic (As), % 0
0.020 to 0.25
Carbon (C), % 0.51 to 0.59
0
Copper (Cu), % 0
59 to 62
Iron (Fe), % 96.2 to 97
0
Lead (Pb), % 0
1.0 to 2.5
Manganese (Mn), % 0.7 to 1.0
0
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 1.8 to 2.2
0
Sulfur (S), % 0 to 0.040
0
Tin (Sn), % 0
0.3 to 1.5
Zinc (Zn), % 0
33.4 to 39.7
Residuals, % 0
0 to 0.4