MakeItFrom.com
Menu (ESC)

SAE-AISI F1 Steel vs. AWS E385

Both SAE-AISI F1 steel and AWS E385 are iron alloys. They have 47% of their average alloy composition in common. There are 24 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI F1 steel and the bottom bar is AWS E385.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 72
79
Tensile Strength: Ultimate (UTS), MPa 620 to 2320
580

Thermal Properties

Latent Heat of Fusion, J/g 250
300
Melting Completion (Liquidus), °C 1480
1440
Melting Onset (Solidus), °C 1430
1390
Specific Heat Capacity, J/kg-K 470
460
Thermal Conductivity, W/m-K 45
14
Thermal Expansion, µm/m-K 13
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.3
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 8.3
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 5.0
31
Density, g/cm3 7.9
8.1
Embodied Carbon, kg CO2/kg material 1.7
5.8
Embodied Energy, MJ/kg 24
79
Embodied Water, L/kg 46
200

Common Calculations

PREN (Pitting Resistance) 2.3
36
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 22 to 82
20
Strength to Weight: Bending, points 20 to 49
19
Thermal Diffusivity, mm2/s 12
3.6
Thermal Shock Resistance, points 19 to 70
15

Alloy Composition

Carbon (C), % 1.0 to 1.3
0 to 0.030
Chromium (Cr), % 0
19.5 to 21.5
Copper (Cu), % 0
1.2 to 2.0
Iron (Fe), % 95.9 to 98
41.8 to 50.1
Manganese (Mn), % 0 to 0.5
1.0 to 2.5
Molybdenum (Mo), % 0
4.2 to 5.2
Nickel (Ni), % 0
24 to 26
Phosphorus (P), % 0 to 0.030
0 to 0.030
Silicon (Si), % 0.1 to 0.5
0 to 0.9
Sulfur (S), % 0 to 0.030
0 to 0.020
Tungsten (W), % 1.0 to 1.8
0