MakeItFrom.com
Menu (ESC)

SAE-AISI L3 Steel vs. S30600 Stainless Steel

Both SAE-AISI L3 steel and S30600 stainless steel are iron alloys. They have 64% of their average alloy composition in common. There are 23 material properties with values for both materials. Properties with values for just one material (11, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI L3 steel and the bottom bar is S30600 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 72
76
Tensile Strength: Ultimate (UTS), MPa 600 to 2250
610

Thermal Properties

Latent Heat of Fusion, J/g 250
350
Melting Completion (Liquidus), °C 1450
1380
Melting Onset (Solidus), °C 1410
1330
Specific Heat Capacity, J/kg-K 470
490
Thermal Conductivity, W/m-K 43
14
Thermal Expansion, µm/m-K 13
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.4
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 8.5
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 2.5
19
Density, g/cm3 7.8
7.6
Embodied Carbon, kg CO2/kg material 1.9
3.6
Embodied Energy, MJ/kg 27
51
Embodied Water, L/kg 53
150

Common Calculations

Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 21 to 80
22
Strength to Weight: Bending, points 20 to 49
21
Thermal Diffusivity, mm2/s 12
3.7
Thermal Shock Resistance, points 18 to 67
14

Alloy Composition

Carbon (C), % 1.0 to 1.1
0 to 0.018
Chromium (Cr), % 1.3 to 1.7
17 to 18.5
Copper (Cu), % 0
0 to 0.5
Iron (Fe), % 95.5 to 97.3
58.9 to 65.3
Manganese (Mn), % 0.25 to 0.8
0 to 2.0
Molybdenum (Mo), % 0
0 to 0.2
Nickel (Ni), % 0
14 to 15.5
Phosphorus (P), % 0 to 0.030
0 to 0.020
Silicon (Si), % 0.1 to 0.5
3.7 to 4.3
Sulfur (S), % 0 to 0.030
0 to 0.020
Vanadium (V), % 0.1 to 0.3
0