MakeItFrom.com
Menu (ESC)

SAE-AISI S4 Steel vs. S32053 Stainless Steel

Both SAE-AISI S4 steel and S32053 stainless steel are iron alloys. They have 47% of their average alloy composition in common. There are 23 material properties with values for both materials. Properties with values for just one material (12, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI S4 steel and the bottom bar is S32053 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
210
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 72
80
Tensile Strength: Ultimate (UTS), MPa 670 to 2140
730

Thermal Properties

Latent Heat of Fusion, J/g 280
310
Melting Completion (Liquidus), °C 1430
1450
Melting Onset (Solidus), °C 1390
1400
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 44
13
Thermal Expansion, µm/m-K 13
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.4
1.8
Electrical Conductivity: Equal Weight (Specific), % IACS 8.7
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 2.2
33
Density, g/cm3 7.7
8.1
Embodied Carbon, kg CO2/kg material 2.0
6.1
Embodied Energy, MJ/kg 29
83
Embodied Water, L/kg 48
210

Common Calculations

Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 24 to 77
25
Strength to Weight: Bending, points 22 to 48
22
Thermal Diffusivity, mm2/s 12
3.3
Thermal Shock Resistance, points 20 to 65
16

Alloy Composition

Carbon (C), % 0.5 to 0.65
0 to 0.030
Chromium (Cr), % 0.1 to 0.5
22 to 24
Iron (Fe), % 95.2 to 96.9
41.7 to 48.8
Manganese (Mn), % 0.6 to 1.0
0 to 1.0
Molybdenum (Mo), % 0
5.0 to 6.0
Nickel (Ni), % 0
24 to 26
Nitrogen (N), % 0
0.17 to 0.22
Phosphorus (P), % 0 to 0.030
0 to 0.030
Silicon (Si), % 1.8 to 2.3
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.010
Vanadium (V), % 0.15 to 0.35
0