MakeItFrom.com
Menu (ESC)

SAE-AISI S4 Steel vs. S42030 Stainless Steel

Both SAE-AISI S4 steel and S42030 stainless steel are iron alloys. They have 83% of their average alloy composition in common. There are 23 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI S4 steel and the bottom bar is S42030 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 72
76
Tensile Strength: Ultimate (UTS), MPa 670 to 2140
670

Thermal Properties

Latent Heat of Fusion, J/g 280
280
Melting Completion (Liquidus), °C 1430
1450
Melting Onset (Solidus), °C 1390
1410
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 44
28
Thermal Expansion, µm/m-K 13
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.4
2.7
Electrical Conductivity: Equal Weight (Specific), % IACS 8.7
3.1

Otherwise Unclassified Properties

Base Metal Price, % relative 2.2
10
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 2.0
2.5
Embodied Energy, MJ/kg 29
34
Embodied Water, L/kg 48
110

Common Calculations

Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 24 to 77
24
Strength to Weight: Bending, points 22 to 48
22
Thermal Diffusivity, mm2/s 12
7.7
Thermal Shock Resistance, points 20 to 65
24

Alloy Composition

Carbon (C), % 0.5 to 0.65
0 to 0.3
Chromium (Cr), % 0.1 to 0.5
12 to 14
Copper (Cu), % 0
2.0 to 3.0
Iron (Fe), % 95.2 to 96.9
77.6 to 85
Manganese (Mn), % 0.6 to 1.0
0 to 1.0
Molybdenum (Mo), % 0
1.0 to 3.0
Phosphorus (P), % 0 to 0.030
0 to 0.040
Silicon (Si), % 1.8 to 2.3
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.030
Vanadium (V), % 0.15 to 0.35
0