MakeItFrom.com
Menu (ESC)

Sintered 2014 Aluminum vs. 295.0 Aluminum

Both sintered 2014 aluminum and 295.0 aluminum are aluminum alloys. They have a very high 98% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is sintered 2014 aluminum and the bottom bar is 295.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
71
Elongation at Break, % 0.5 to 3.0
2.0 to 7.2
Fatigue Strength, MPa 52 to 100
44 to 55
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
27
Tensile Strength: Ultimate (UTS), MPa 140 to 290
230 to 280
Tensile Strength: Yield (Proof), MPa 97 to 280
100 to 220

Thermal Properties

Latent Heat of Fusion, J/g 390
400
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 650
640
Melting Onset (Solidus), °C 560
530
Specific Heat Capacity, J/kg-K 880
880
Thermal Conductivity, W/m-K 130
140
Thermal Expansion, µm/m-K 23
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
35
Electrical Conductivity: Equal Weight (Specific), % IACS 100
100

Otherwise Unclassified Properties

Base Metal Price, % relative 10
10
Density, g/cm3 2.9
3.0
Embodied Carbon, kg CO2/kg material 8.0
7.9
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1150
1140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.0 to 5.7
5.2 to 13
Resilience: Unit (Modulus of Resilience), kJ/m3 68 to 560
77 to 340
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 47
46
Strength to Weight: Axial, points 13 to 27
21 to 26
Strength to Weight: Bending, points 20 to 33
27 to 32
Thermal Diffusivity, mm2/s 51
54
Thermal Shock Resistance, points 6.2 to 13
9.8 to 12

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 91.5 to 96.3
91.4 to 95.3
Copper (Cu), % 3.5 to 5.0
4.0 to 5.0
Iron (Fe), % 0
0 to 1.0
Magnesium (Mg), % 0.2 to 0.8
0 to 0.030
Manganese (Mn), % 0
0 to 0.35
Silicon (Si), % 0 to 1.2
0.7 to 1.5
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0
0 to 0.35
Residuals, % 0 to 1.5
0 to 0.15