MakeItFrom.com
Menu (ESC)

Sintered 2014 Aluminum vs. 359.0 Aluminum

Both sintered 2014 aluminum and 359.0 aluminum are aluminum alloys. They have a moderately high 91% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is sintered 2014 aluminum and the bottom bar is 359.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
71
Elongation at Break, % 0.5 to 3.0
3.8 to 4.9
Fatigue Strength, MPa 52 to 100
100
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
27
Tensile Strength: Ultimate (UTS), MPa 140 to 290
340 to 350
Tensile Strength: Yield (Proof), MPa 97 to 280
250 to 280

Thermal Properties

Latent Heat of Fusion, J/g 390
530
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 650
600
Melting Onset (Solidus), °C 560
570
Specific Heat Capacity, J/kg-K 880
910
Thermal Conductivity, W/m-K 130
140
Thermal Expansion, µm/m-K 23
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
35
Electrical Conductivity: Equal Weight (Specific), % IACS 100
120

Otherwise Unclassified Properties

Base Metal Price, % relative 10
9.5
Density, g/cm3 2.9
2.6
Embodied Carbon, kg CO2/kg material 8.0
8.0
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1150
1090

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.0 to 5.7
12 to 15
Resilience: Unit (Modulus of Resilience), kJ/m3 68 to 560
450 to 540
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 47
54
Strength to Weight: Axial, points 13 to 27
37 to 38
Strength to Weight: Bending, points 20 to 33
42 to 43
Thermal Diffusivity, mm2/s 51
59
Thermal Shock Resistance, points 6.2 to 13
16 to 17

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 91.5 to 96.3
88.9 to 91
Copper (Cu), % 3.5 to 5.0
0 to 0.2
Iron (Fe), % 0
0 to 0.2
Magnesium (Mg), % 0.2 to 0.8
0.5 to 0.7
Manganese (Mn), % 0
0 to 0.1
Silicon (Si), % 0 to 1.2
8.5 to 9.5
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0 to 1.5
0 to 0.15