MakeItFrom.com
Menu (ESC)

Sintered 2014 Aluminum vs. 4032 Aluminum

Both sintered 2014 aluminum and 4032 aluminum are aluminum alloys. They have 86% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is sintered 2014 aluminum and the bottom bar is 4032 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
73
Elongation at Break, % 0.5 to 3.0
6.7
Fatigue Strength, MPa 52 to 100
110
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
28
Tensile Strength: Ultimate (UTS), MPa 140 to 290
390
Tensile Strength: Yield (Proof), MPa 97 to 280
320

Thermal Properties

Latent Heat of Fusion, J/g 390
570
Maximum Temperature: Mechanical, °C 170
180
Melting Completion (Liquidus), °C 650
570
Melting Onset (Solidus), °C 560
530
Specific Heat Capacity, J/kg-K 880
900
Thermal Conductivity, W/m-K 130
140
Thermal Expansion, µm/m-K 23
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
34
Electrical Conductivity: Equal Weight (Specific), % IACS 100
120

Otherwise Unclassified Properties

Base Metal Price, % relative 10
10
Density, g/cm3 2.9
2.6
Embodied Carbon, kg CO2/kg material 8.0
7.8
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 1150
1030

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.0 to 5.7
25
Resilience: Unit (Modulus of Resilience), kJ/m3 68 to 560
700
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 47
53
Strength to Weight: Axial, points 13 to 27
41
Strength to Weight: Bending, points 20 to 33
45
Thermal Diffusivity, mm2/s 51
59
Thermal Shock Resistance, points 6.2 to 13
20

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 91.5 to 96.3
81.1 to 87.2
Chromium (Cr), % 0
0 to 0.1
Copper (Cu), % 3.5 to 5.0
0.5 to 1.3
Iron (Fe), % 0
0 to 1.0
Magnesium (Mg), % 0.2 to 0.8
0.8 to 1.3
Nickel (Ni), % 0
0.5 to 1.3
Silicon (Si), % 0 to 1.2
11 to 13.5
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0 to 1.5
0 to 0.15