MakeItFrom.com
Menu (ESC)

Sintered 2014 Aluminum vs. S45503 Stainless Steel

Sintered 2014 aluminum belongs to the aluminum alloys classification, while S45503 stainless steel belongs to the iron alloys. There are 24 material properties with values for both materials. Properties with values for just one material (11, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is sintered 2014 aluminum and the bottom bar is S45503 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 0.5 to 3.0
4.6 to 6.8
Fatigue Strength, MPa 52 to 100
710 to 800
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
75
Tensile Strength: Ultimate (UTS), MPa 140 to 290
1610 to 1850
Tensile Strength: Yield (Proof), MPa 97 to 280
1430 to 1700

Thermal Properties

Latent Heat of Fusion, J/g 390
270
Maximum Temperature: Mechanical, °C 170
760
Melting Completion (Liquidus), °C 650
1440
Melting Onset (Solidus), °C 560
1400
Specific Heat Capacity, J/kg-K 880
470
Thermal Expansion, µm/m-K 23
11

Otherwise Unclassified Properties

Base Metal Price, % relative 10
15
Density, g/cm3 2.9
7.9
Embodied Carbon, kg CO2/kg material 8.0
3.4
Embodied Energy, MJ/kg 150
48
Embodied Water, L/kg 1150
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.0 to 5.7
82 to 110
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 47
24
Strength to Weight: Axial, points 13 to 27
57 to 65
Strength to Weight: Bending, points 20 to 33
39 to 43
Thermal Shock Resistance, points 6.2 to 13
56 to 64

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 91.5 to 96.3
0
Carbon (C), % 0
0 to 0.010
Chromium (Cr), % 0
11 to 12.5
Copper (Cu), % 3.5 to 5.0
1.5 to 2.5
Iron (Fe), % 0
72.4 to 78.9
Magnesium (Mg), % 0.2 to 0.8
0
Manganese (Mn), % 0
0 to 0.5
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
7.5 to 9.5
Niobium (Nb), % 0
0.1 to 0.5
Phosphorus (P), % 0
0 to 0.010
Silicon (Si), % 0 to 1.2
0 to 0.2
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0
1.0 to 1.4
Residuals, % 0 to 1.5
0