MakeItFrom.com
Menu (ESC)

Sintered 6061 Aluminum vs. C49300 Brass

Sintered 6061 aluminum belongs to the aluminum alloys classification, while C49300 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is sintered 6061 aluminum and the bottom bar is C49300 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
100
Elongation at Break, % 0.5 to 6.0
4.5 to 20
Poisson's Ratio 0.33
0.31
Shear Modulus, GPa 25
40
Tensile Strength: Ultimate (UTS), MPa 83 to 210
430 to 520
Tensile Strength: Yield (Proof), MPa 62 to 190
210 to 410

Thermal Properties

Latent Heat of Fusion, J/g 400
170
Maximum Temperature: Mechanical, °C 170
120
Melting Completion (Liquidus), °C 640
880
Melting Onset (Solidus), °C 610
840
Specific Heat Capacity, J/kg-K 900
380
Thermal Conductivity, W/m-K 200
88
Thermal Expansion, µm/m-K 23
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 52
15
Electrical Conductivity: Equal Weight (Specific), % IACS 170
17

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
26
Density, g/cm3 2.7
8.0
Embodied Carbon, kg CO2/kg material 8.3
3.0
Embodied Energy, MJ/kg 150
50
Embodied Water, L/kg 1180
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 0.68 to 7.0
21 to 71
Resilience: Unit (Modulus of Resilience), kJ/m3 28 to 280
220 to 800
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 51
19
Strength to Weight: Axial, points 8.6 to 21
15 to 18
Strength to Weight: Bending, points 16 to 29
16 to 18
Thermal Diffusivity, mm2/s 81
29
Thermal Shock Resistance, points 3.8 to 9.4
14 to 18

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 96 to 99.4
0 to 0.5
Antimony (Sb), % 0
0 to 0.5
Bismuth (Bi), % 0
0.5 to 2.0
Copper (Cu), % 0 to 0.5
58 to 62
Iron (Fe), % 0
0 to 0.1
Lead (Pb), % 0
0 to 0.010
Magnesium (Mg), % 0.4 to 1.2
0
Manganese (Mn), % 0
0 to 0.030
Nickel (Ni), % 0
0 to 1.5
Phosphorus (P), % 0
0 to 0.2
Selenium (Se), % 0
0 to 0.2
Silicon (Si), % 0.2 to 0.8
0 to 0.1
Tin (Sn), % 0
1.0 to 1.8
Zinc (Zn), % 0
30.6 to 40.5
Residuals, % 0 to 1.5
0 to 0.5

Comparable Variants