MakeItFrom.com
Menu (ESC)

H08 C10400 Copper vs. H08 C70600 Copper-nickel

Both H08 C10400 copper and H08 C70600 copper-nickel are copper alloys. Both are furnished in the H08 (spring) temper. They have 87% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is H08 C10400 copper and the bottom bar is H08 C70600 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
120
Elongation at Break, % 2.3
3.0
Poisson's Ratio 0.34
0.34
Rockwell Superficial 30T Hardness 63
75
Shear Modulus, GPa 43
46
Shear Strength, MPa 210
330
Tensile Strength: Ultimate (UTS), MPa 370
570
Tensile Strength: Yield (Proof), MPa 350
79

Thermal Properties

Latent Heat of Fusion, J/g 210
220
Maximum Temperature: Mechanical, °C 200
220
Melting Completion (Liquidus), °C 1080
1150
Melting Onset (Solidus), °C 1080
1100
Specific Heat Capacity, J/kg-K 390
390
Thermal Conductivity, W/m-K 390
44
Thermal Expansion, µm/m-K 17
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 100
9.8
Electrical Conductivity: Equal Weight (Specific), % IACS 100
9.9

Otherwise Unclassified Properties

Base Metal Price, % relative 32
33
Density, g/cm3 9.0
8.9
Embodied Carbon, kg CO2/kg material 2.6
3.4
Embodied Energy, MJ/kg 42
51
Embodied Water, L/kg 340
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 8.5
12
Resilience: Unit (Modulus of Resilience), kJ/m3 520
25
Stiffness to Weight: Axial, points 7.2
7.7
Stiffness to Weight: Bending, points 18
19
Strength to Weight: Axial, points 12
18
Strength to Weight: Bending, points 13
17
Thermal Diffusivity, mm2/s 110
13
Thermal Shock Resistance, points 13
19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Copper (Cu), % 99.9 to 99.973
84.7 to 90
Iron (Fe), % 0
1.0 to 1.8
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0
9.0 to 11
Oxygen (O), % 0 to 0.0010
0
Silver (Ag), % 0.027 to 0.050
0
Zinc (Zn), % 0
0 to 1.0
Residuals, % 0 to 0.050
0 to 0.5