MakeItFrom.com
Menu (ESC)

H08 C10800 Copper vs. H08 C40500 Penny Bronze

Both H08 C10800 copper and H08 C40500 penny bronze are copper alloys. Both are furnished in the H08 (spring) temper. They have a very high 95% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is H08 C10800 copper and the bottom bar is H08 C40500 penny bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Elongation at Break, % 4.0
4.0
Poisson's Ratio 0.34
0.34
Rockwell B Hardness 60
79
Rockwell Superficial 30T Hardness 63
71
Shear Modulus, GPa 43
43
Shear Strength, MPa 200
300
Tensile Strength: Ultimate (UTS), MPa 380
510
Tensile Strength: Yield (Proof), MPa 370
480

Thermal Properties

Latent Heat of Fusion, J/g 210
200
Maximum Temperature: Mechanical, °C 200
190
Melting Completion (Liquidus), °C 1080
1060
Melting Onset (Solidus), °C 1080
1020
Specific Heat Capacity, J/kg-K 390
380
Thermal Conductivity, W/m-K 350
160
Thermal Expansion, µm/m-K 17
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 92
41
Electrical Conductivity: Equal Weight (Specific), % IACS 92
42

Otherwise Unclassified Properties

Base Metal Price, % relative 31
30
Density, g/cm3 9.0
8.8
Embodied Carbon, kg CO2/kg material 2.6
2.7
Embodied Energy, MJ/kg 41
43
Embodied Water, L/kg 310
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 15
20
Resilience: Unit (Modulus of Resilience), kJ/m3 600
1030
Stiffness to Weight: Axial, points 7.2
7.2
Stiffness to Weight: Bending, points 18
18
Strength to Weight: Axial, points 12
16
Strength to Weight: Bending, points 13
16
Thermal Diffusivity, mm2/s 100
48
Thermal Shock Resistance, points 13
18

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Copper (Cu), % 99.95 to 99.995
94 to 96
Iron (Fe), % 0
0 to 0.050
Lead (Pb), % 0
0 to 0.050
Phosphorus (P), % 0.0050 to 0.012
0
Tin (Sn), % 0
0.7 to 1.3
Zinc (Zn), % 0
2.1 to 5.3
Residuals, % 0
0 to 0.5