MakeItFrom.com
Menu (ESC)

H08 C11000 Copper vs. H08 C65500 Bronze

Both H08 C11000 copper and H08 C65500 bronze are copper alloys. Both are furnished in the H08 (spring) temper. They have a moderately high 94% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is H08 C11000 copper and the bottom bar is H08 C65500 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
120
Elongation at Break, % 1.5
4.0
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 43
43
Shear Strength, MPa 230
440
Tensile Strength: Ultimate (UTS), MPa 410
760
Tensile Strength: Yield (Proof), MPa 390
430

Thermal Properties

Latent Heat of Fusion, J/g 210
260
Maximum Temperature: Mechanical, °C 200
200
Melting Completion (Liquidus), °C 1080
1030
Melting Onset (Solidus), °C 1070
970
Specific Heat Capacity, J/kg-K 390
400
Thermal Conductivity, W/m-K 390
36
Thermal Expansion, µm/m-K 17
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 100
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 100
7.3

Otherwise Unclassified Properties

Base Metal Price, % relative 31
29
Density, g/cm3 9.0
8.6
Embodied Carbon, kg CO2/kg material 2.6
2.7
Embodied Energy, MJ/kg 41
42
Embodied Water, L/kg 310
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.1
26
Resilience: Unit (Modulus of Resilience), kJ/m3 640
790
Stiffness to Weight: Axial, points 7.2
7.5
Stiffness to Weight: Bending, points 18
19
Strength to Weight: Axial, points 13
24
Strength to Weight: Bending, points 14
21
Thermal Diffusivity, mm2/s 110
10
Thermal Shock Resistance, points 15
26

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Copper (Cu), % 99.9 to 100
91.5 to 96.7
Iron (Fe), % 0
0 to 0.8
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0
0.5 to 1.3
Nickel (Ni), % 0
0 to 0.6
Silicon (Si), % 0
2.8 to 3.8
Zinc (Zn), % 0
0 to 1.5
Residuals, % 0 to 0.1
0 to 0.5