MakeItFrom.com
Menu (ESC)

H08 C14300 Copper vs. H08 C76200 Nickel Silver

Both H08 C14300 copper and H08 C76200 nickel silver are copper alloys. Both are furnished in the H08 (spring) temper. They have 59% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is H08 C14300 copper and the bottom bar is H08 C76200 nickel silver.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
120
Elongation at Break, % 5.0
1.0
Poisson's Ratio 0.34
0.31
Shear Modulus, GPa 43
44
Shear Strength, MPa 220
450
Tensile Strength: Ultimate (UTS), MPa 380
790
Tensile Strength: Yield (Proof), MPa 360
770

Thermal Properties

Latent Heat of Fusion, J/g 210
190
Maximum Temperature: Mechanical, °C 220
170
Melting Completion (Liquidus), °C 1080
1030
Melting Onset (Solidus), °C 1050
980
Specific Heat Capacity, J/kg-K 390
390
Thermal Conductivity, W/m-K 380
45
Thermal Expansion, µm/m-K 17
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 96
9.0
Electrical Conductivity: Equal Weight (Specific), % IACS 96
9.8

Otherwise Unclassified Properties

Base Metal Price, % relative 31
29
Density, g/cm3 9.0
8.2
Embodied Carbon, kg CO2/kg material 2.6
3.6
Embodied Energy, MJ/kg 41
57
Embodied Water, L/kg 310
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19
7.8
Resilience: Unit (Modulus of Resilience), kJ/m3 550
2520
Stiffness to Weight: Axial, points 7.2
7.8
Stiffness to Weight: Bending, points 18
20
Strength to Weight: Axial, points 12
27
Strength to Weight: Bending, points 13
23
Thermal Diffusivity, mm2/s 110
14
Thermal Shock Resistance, points 13
26

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Cadmium (Cd), % 0.050 to 0.15
0
Copper (Cu), % 99.9 to 99.95
57 to 61
Iron (Fe), % 0
0 to 0.25
Lead (Pb), % 0
0 to 0.1
Manganese (Mn), % 0
0 to 0.5
Nickel (Ni), % 0
11 to 13.5
Zinc (Zn), % 0
24.2 to 32
Residuals, % 0
0 to 0.5