MakeItFrom.com
Menu (ESC)

H08 C15100 Copper vs. H08 C19200 Copper

Both H08 C15100 copper and H08 C19200 copper are copper alloys. Both are furnished in the H08 (spring) temper. They have a very high 99% of their average alloy composition in common.

For each property being compared, the top bar is H08 C15100 copper and the bottom bar is H08 C19200 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
120
Elongation at Break, % 2.0
2.0
Poisson's Ratio 0.34
0.34
Rockwell B Hardness 64
75
Rockwell Superficial 30T Hardness 65
72
Shear Modulus, GPa 43
44
Shear Strength, MPa 270
290
Tensile Strength: Ultimate (UTS), MPa 470
510
Tensile Strength: Yield (Proof), MPa 460
490

Thermal Properties

Latent Heat of Fusion, J/g 210
210
Maximum Temperature: Mechanical, °C 200
200
Melting Completion (Liquidus), °C 1100
1080
Melting Onset (Solidus), °C 1030
1080
Specific Heat Capacity, J/kg-K 390
390
Thermal Conductivity, W/m-K 360
240
Thermal Expansion, µm/m-K 17
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 95
68
Electrical Conductivity: Equal Weight (Specific), % IACS 95
69

Otherwise Unclassified Properties

Base Metal Price, % relative 31
30
Density, g/cm3 9.0
8.9
Embodied Carbon, kg CO2/kg material 2.7
2.6
Embodied Energy, MJ/kg 43
41
Embodied Water, L/kg 310
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.3
10
Resilience: Unit (Modulus of Resilience), kJ/m3 890
1030
Stiffness to Weight: Axial, points 7.2
7.2
Stiffness to Weight: Bending, points 18
18
Strength to Weight: Axial, points 15
16
Strength to Weight: Bending, points 15
16
Thermal Diffusivity, mm2/s 100
69
Thermal Shock Resistance, points 17
18

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Copper (Cu), % 99.8 to 99.95
98.5 to 99.19
Iron (Fe), % 0
0.8 to 1.2
Lead (Pb), % 0
0 to 0.030
Phosphorus (P), % 0
0.010 to 0.040
Zinc (Zn), % 0
0 to 0.2
Zirconium (Zr), % 0.050 to 0.15
0
Residuals, % 0 to 0.1
0 to 0.2