MakeItFrom.com
Menu (ESC)

H08 C15100 Copper vs. H08 C72800 Copper-nickel

Both H08 C15100 copper and H08 C72800 copper-nickel are copper alloys. Both are furnished in the H08 (spring) temper. They have 81% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is H08 C15100 copper and the bottom bar is H08 C72800 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
120
Elongation at Break, % 2.0
3.9
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 43
44
Shear Strength, MPa 270
550
Tensile Strength: Ultimate (UTS), MPa 470
960
Tensile Strength: Yield (Proof), MPa 460
910

Thermal Properties

Latent Heat of Fusion, J/g 210
210
Maximum Temperature: Mechanical, °C 200
200
Melting Completion (Liquidus), °C 1100
1080
Melting Onset (Solidus), °C 1030
920
Specific Heat Capacity, J/kg-K 390
380
Thermal Conductivity, W/m-K 360
55
Thermal Expansion, µm/m-K 17
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 95
11
Electrical Conductivity: Equal Weight (Specific), % IACS 95
11

Otherwise Unclassified Properties

Base Metal Price, % relative 31
38
Density, g/cm3 9.0
8.8
Embodied Carbon, kg CO2/kg material 2.7
4.4
Embodied Energy, MJ/kg 43
68
Embodied Water, L/kg 310
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.3
37
Resilience: Unit (Modulus of Resilience), kJ/m3 890
3530
Stiffness to Weight: Axial, points 7.2
7.4
Stiffness to Weight: Bending, points 18
19
Strength to Weight: Axial, points 15
30
Strength to Weight: Bending, points 15
25
Thermal Diffusivity, mm2/s 100
17
Thermal Shock Resistance, points 17
34

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
0 to 0.1
Antimony (Sb), % 0
0 to 0.020
Bismuth (Bi), % 0
0 to 0.0010
Boron (B), % 0
0 to 0.0010
Copper (Cu), % 99.8 to 99.95
78.3 to 82.8
Iron (Fe), % 0
0 to 0.5
Lead (Pb), % 0
0 to 0.0050
Magnesium (Mg), % 0
0.0050 to 0.15
Manganese (Mn), % 0
0.050 to 0.3
Nickel (Ni), % 0
9.5 to 10.5
Niobium (Nb), % 0
0.1 to 0.3
Phosphorus (P), % 0
0 to 0.0050
Silicon (Si), % 0
0 to 0.050
Sulfur (S), % 0
0 to 0.0025
Tin (Sn), % 0
7.5 to 8.5
Titanium (Ti), % 0
0 to 0.010
Zinc (Zn), % 0
0 to 1.0
Zirconium (Zr), % 0.050 to 0.15
0
Residuals, % 0 to 0.1
0 to 0.3