MakeItFrom.com
Menu (ESC)

H08 C16200 Copper vs. H08 C68800 Brass

Both H08 C16200 copper and H08 C68800 brass are copper alloys. Both are furnished in the H08 (spring) temper. They have 73% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is H08 C16200 copper and the bottom bar is H08 C68800 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Elongation at Break, % 2.0
2.0
Poisson's Ratio 0.34
0.32
Shear Modulus, GPa 43
41
Shear Strength, MPa 310
480
Tensile Strength: Ultimate (UTS), MPa 550
840
Tensile Strength: Yield (Proof), MPa 460
760

Thermal Properties

Latent Heat of Fusion, J/g 210
190
Maximum Temperature: Mechanical, °C 370
160
Melting Completion (Liquidus), °C 1080
960
Melting Onset (Solidus), °C 1030
950
Specific Heat Capacity, J/kg-K 380
400
Thermal Conductivity, W/m-K 360
40
Thermal Expansion, µm/m-K 17
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 90
18
Electrical Conductivity: Equal Weight (Specific), % IACS 90
20

Otherwise Unclassified Properties

Base Metal Price, % relative 30
26
Density, g/cm3 9.0
8.2
Embodied Carbon, kg CO2/kg material 2.6
2.8
Embodied Energy, MJ/kg 41
48
Embodied Water, L/kg 310
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 10
16
Resilience: Unit (Modulus of Resilience), kJ/m3 900
2670
Stiffness to Weight: Axial, points 7.2
7.3
Stiffness to Weight: Bending, points 18
19
Strength to Weight: Axial, points 17
29
Strength to Weight: Bending, points 17
24
Thermal Diffusivity, mm2/s 100
12
Thermal Shock Resistance, points 20
29

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
3.0 to 3.8
Cadmium (Cd), % 0.7 to 1.2
0
Cobalt (Co), % 0
0.25 to 0.55
Copper (Cu), % 98.6 to 99.3
70.8 to 75.5
Iron (Fe), % 0 to 0.2
0 to 0.2
Lead (Pb), % 0
0 to 0.050
Zinc (Zn), % 0
21.3 to 24.1
Residuals, % 0
0 to 0.5