MakeItFrom.com
Menu (ESC)

H08 C23000 Brass vs. H08 C72800 Copper-nickel

Both H08 C23000 brass and H08 C72800 copper-nickel are copper alloys. Both are furnished in the H08 (spring) temper. They have 81% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is H08 C23000 brass and the bottom bar is H08 C72800 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
120
Elongation at Break, % 3.0
3.9
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 42
44
Shear Strength, MPa 320
550
Tensile Strength: Ultimate (UTS), MPa 570
960
Tensile Strength: Yield (Proof), MPa 440
910

Thermal Properties

Latent Heat of Fusion, J/g 190
210
Maximum Temperature: Mechanical, °C 170
200
Melting Completion (Liquidus), °C 1030
1080
Melting Onset (Solidus), °C 990
920
Specific Heat Capacity, J/kg-K 390
380
Thermal Conductivity, W/m-K 160
55
Thermal Expansion, µm/m-K 19
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 37
11
Electrical Conductivity: Equal Weight (Specific), % IACS 39
11

Otherwise Unclassified Properties

Base Metal Price, % relative 28
38
Density, g/cm3 8.6
8.8
Embodied Carbon, kg CO2/kg material 2.6
4.4
Embodied Energy, MJ/kg 43
68
Embodied Water, L/kg 310
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 16
37
Resilience: Unit (Modulus of Resilience), kJ/m3 850
3530
Stiffness to Weight: Axial, points 7.2
7.4
Stiffness to Weight: Bending, points 19
19
Strength to Weight: Axial, points 18
30
Strength to Weight: Bending, points 18
25
Thermal Diffusivity, mm2/s 48
17
Thermal Shock Resistance, points 20
34

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
0 to 0.1
Antimony (Sb), % 0
0 to 0.020
Bismuth (Bi), % 0
0 to 0.0010
Boron (B), % 0
0 to 0.0010
Copper (Cu), % 84 to 86
78.3 to 82.8
Iron (Fe), % 0 to 0.050
0 to 0.5
Lead (Pb), % 0 to 0.050
0 to 0.0050
Magnesium (Mg), % 0
0.0050 to 0.15
Manganese (Mn), % 0
0.050 to 0.3
Nickel (Ni), % 0
9.5 to 10.5
Niobium (Nb), % 0
0.1 to 0.3
Phosphorus (P), % 0
0 to 0.0050
Silicon (Si), % 0
0 to 0.050
Sulfur (S), % 0
0 to 0.0025
Tin (Sn), % 0
7.5 to 8.5
Titanium (Ti), % 0
0 to 0.010
Zinc (Zn), % 13.7 to 16
0 to 1.0
Residuals, % 0 to 0.2
0 to 0.3