MakeItFrom.com
Menu (ESC)

H08 C41500 Brass vs. H08 C61500 Bronze

Both H08 C41500 brass and H08 C61500 bronze are copper alloys. Both are furnished in the H08 (spring) temper. They have a moderately high 90% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is H08 C41500 brass and the bottom bar is H08 C61500 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 3.0
3.0
Poisson's Ratio 0.33
0.34
Rockwell Superficial 30T Hardness 75
85
Shear Modulus, GPa 42
42
Shear Strength, MPa 340
550
Tensile Strength: Ultimate (UTS), MPa 560
970
Tensile Strength: Yield (Proof), MPa 530
720

Thermal Properties

Latent Heat of Fusion, J/g 200
220
Maximum Temperature: Mechanical, °C 180
220
Melting Completion (Liquidus), °C 1030
1040
Melting Onset (Solidus), °C 1010
1030
Specific Heat Capacity, J/kg-K 380
430
Thermal Conductivity, W/m-K 120
58
Thermal Expansion, µm/m-K 18
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
13
Electrical Conductivity: Equal Weight (Specific), % IACS 29
13

Otherwise Unclassified Properties

Base Metal Price, % relative 30
29
Density, g/cm3 8.7
8.4
Embodied Carbon, kg CO2/kg material 2.8
3.2
Embodied Energy, MJ/kg 45
52
Embodied Water, L/kg 330
380

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 16
27
Resilience: Unit (Modulus of Resilience), kJ/m3 1260
2310
Stiffness to Weight: Axial, points 7.1
7.5
Stiffness to Weight: Bending, points 18
19
Strength to Weight: Axial, points 18
32
Strength to Weight: Bending, points 17
26
Thermal Diffusivity, mm2/s 37
16
Thermal Shock Resistance, points 20
34

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
7.7 to 8.3
Copper (Cu), % 89 to 93
89 to 90.5
Iron (Fe), % 0 to 0.050
0
Lead (Pb), % 0 to 0.1
0 to 0.015
Nickel (Ni), % 0
1.8 to 2.2
Tin (Sn), % 1.5 to 2.2
0
Zinc (Zn), % 4.2 to 9.5
0
Residuals, % 0 to 0.5
0 to 0.5