MakeItFrom.com
Menu (ESC)

TD02 C17000 Copper vs. TD02 C72700 Copper-nickel

Both TD02 C17000 copper and TD02 C72700 copper-nickel are copper alloys. Both are furnished in the TD02 (solution heat treated and cold worked to half-hard) temper. They have 85% of their average alloy composition in common. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is TD02 C17000 copper and the bottom bar is TD02 C72700 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
120
Elongation at Break, % 10
4.0
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 45
44
Shear Strength, MPa 380
370
Tensile Strength: Ultimate (UTS), MPa 640
630

Thermal Properties

Latent Heat of Fusion, J/g 230
210
Maximum Temperature: Mechanical, °C 270
200
Melting Completion (Liquidus), °C 980
1100
Melting Onset (Solidus), °C 870
930
Specific Heat Capacity, J/kg-K 390
380
Thermal Conductivity, W/m-K 110
54
Thermal Expansion, µm/m-K 17
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 22
11
Electrical Conductivity: Equal Weight (Specific), % IACS 22
11

Otherwise Unclassified Properties

Density, g/cm3 8.8
8.8
Embodied Carbon, kg CO2/kg material 8.7
4.0
Embodied Energy, MJ/kg 140
62
Embodied Water, L/kg 310
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.2 to 390
20 to 380
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 5420
1420
Stiffness to Weight: Axial, points 7.6
7.4
Stiffness to Weight: Bending, points 19
19
Strength to Weight: Axial, points 20
20
Strength to Weight: Bending, points 19
19
Thermal Diffusivity, mm2/s 32
16
Thermal Shock Resistance, points 22
22

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.2
0
Beryllium (Be), % 1.6 to 1.8
0
Copper (Cu), % 96.3 to 98.2
82.1 to 86
Iron (Fe), % 0 to 0.4
0 to 0.5
Lead (Pb), % 0
0 to 0.020
Magnesium (Mg), % 0
0 to 0.15
Manganese (Mn), % 0
0.050 to 0.3
Nickel (Ni), % 0.2 to 0.6
8.5 to 9.5
Niobium (Nb), % 0
0 to 0.1
Silicon (Si), % 0 to 0.2
0
Tin (Sn), % 0
5.5 to 6.5
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0 to 0.5
0 to 0.3