MakeItFrom.com
Menu (ESC)

Half-hard K93050 Alloy vs. Half-hard K93603 Alloy

Both half-hard K93050 alloy and half-hard K93603 alloy are iron alloys. Both are furnished in the half-hard temper. Their average alloy composition is basically identical.

For each property being compared, the top bar is half-hard K93050 alloy and the bottom bar is half-hard K93603 alloy.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Poisson's Ratio 0.3
0.3
Shear Modulus, GPa 72
72
Tensile Strength: Ultimate (UTS), MPa 680
680

Thermal Properties

Latent Heat of Fusion, J/g 270
270
Melting Completion (Liquidus), °C 1430
1430
Melting Onset (Solidus), °C 1380
1380
Specific Heat Capacity, J/kg-K 460
460
Thermal Expansion, µm/m-K 12
12

Otherwise Unclassified Properties

Base Metal Price, % relative 26
25
Density, g/cm3 8.2
8.2
Embodied Carbon, kg CO2/kg material 4.7
4.8
Embodied Energy, MJ/kg 65
66
Embodied Water, L/kg 120
120

Common Calculations

Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 23
23
Strength to Weight: Axial, points 23
23
Strength to Weight: Bending, points 21
21
Thermal Shock Resistance, points 21
21

Alloy Composition

Aluminum (Al), % 0
0 to 0.1
Carbon (C), % 0 to 0.15
0 to 0.050
Chromium (Cr), % 0 to 0.25
0 to 0.25
Cobalt (Co), % 0 to 0.5
0 to 0.5
Iron (Fe), % 61.4 to 63.9
61.8 to 64
Magnesium (Mg), % 0
0 to 0.1
Manganese (Mn), % 0 to 1.0
0 to 0.6
Nickel (Ni), % 36
36
Phosphorus (P), % 0 to 0.020
0 to 0.015
Selenium (Se), % 0.15 to 0.3
0
Silicon (Si), % 0 to 0.35
0 to 0.4
Sulfur (S), % 0 to 0.020
0 to 0.015
Titanium (Ti), % 0
0 to 0.1
Zirconium (Zr), % 0
0 to 0.1