MakeItFrom.com
Menu (ESC)

Titanium 15-3-3-3 vs. 6008 Aluminum

Titanium 15-3-3-3 belongs to the titanium alloys classification, while 6008 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is titanium 15-3-3-3 and the bottom bar is 6008 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
69
Elongation at Break, % 5.7 to 8.0
9.1 to 17
Fatigue Strength, MPa 610 to 710
55 to 88
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 39
26
Shear Strength, MPa 660 to 810
120 to 170
Tensile Strength: Ultimate (UTS), MPa 1120 to 1390
200 to 290
Tensile Strength: Yield (Proof), MPa 1100 to 1340
100 to 220

Thermal Properties

Latent Heat of Fusion, J/g 390
410
Maximum Temperature: Mechanical, °C 430
180
Melting Completion (Liquidus), °C 1620
640
Melting Onset (Solidus), °C 1560
620
Specific Heat Capacity, J/kg-K 520
900
Thermal Conductivity, W/m-K 8.1
190
Thermal Expansion, µm/m-K 9.8
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.2
49
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
160

Otherwise Unclassified Properties

Base Metal Price, % relative 40
9.5
Density, g/cm3 4.8
2.7
Embodied Carbon, kg CO2/kg material 59
8.5
Embodied Energy, MJ/kg 950
160
Embodied Water, L/kg 260
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 78 to 89
24 to 28
Stiffness to Weight: Axial, points 12
14
Stiffness to Weight: Bending, points 32
50
Strength to Weight: Axial, points 64 to 80
21 to 29
Strength to Weight: Bending, points 50 to 57
28 to 35
Thermal Diffusivity, mm2/s 3.2
77
Thermal Shock Resistance, points 79 to 98
9.0 to 13

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 2.5 to 3.5
96.5 to 99.1
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 2.5 to 3.5
0 to 0.3
Copper (Cu), % 0
0 to 0.3
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
0 to 0.35
Magnesium (Mg), % 0
0.4 to 0.7
Manganese (Mn), % 0
0 to 0.3
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.13
0
Silicon (Si), % 0
0.5 to 0.9
Tin (Sn), % 2.5 to 3.5
0
Titanium (Ti), % 72.6 to 78.5
0 to 0.1
Vanadium (V), % 14 to 16
0.050 to 0.2
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0 to 0.4
0 to 0.15