MakeItFrom.com
Menu (ESC)

Titanium 15-3-3-3 vs. ASTM A210 Steel

Titanium 15-3-3-3 belongs to the titanium alloys classification, while ASTM A210 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is titanium 15-3-3-3 and the bottom bar is ASTM A210 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 5.7 to 8.0
34
Fatigue Strength, MPa 610 to 710
230 to 250
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 39
73
Shear Strength, MPa 660 to 810
320 to 360
Tensile Strength: Ultimate (UTS), MPa 1120 to 1390
470 to 540
Tensile Strength: Yield (Proof), MPa 1100 to 1340
290 to 310

Thermal Properties

Latent Heat of Fusion, J/g 390
250
Maximum Temperature: Mechanical, °C 430
400
Melting Completion (Liquidus), °C 1620
1460 to 1470
Melting Onset (Solidus), °C 1560
1420
Specific Heat Capacity, J/kg-K 520
470
Thermal Conductivity, W/m-K 8.1
52 to 53
Thermal Expansion, µm/m-K 9.8
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.2
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
8.0 to 8.1

Otherwise Unclassified Properties

Base Metal Price, % relative 40
1.8
Density, g/cm3 4.8
7.9
Embodied Carbon, kg CO2/kg material 59
1.4
Embodied Energy, MJ/kg 950
18
Embodied Water, L/kg 260
45 to 46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 78 to 89
140 to 160
Stiffness to Weight: Axial, points 12
13
Stiffness to Weight: Bending, points 32
24
Strength to Weight: Axial, points 64 to 80
17 to 19
Strength to Weight: Bending, points 50 to 57
17 to 19
Thermal Diffusivity, mm2/s 3.2
14
Thermal Shock Resistance, points 79 to 98
15 to 17