MakeItFrom.com
Menu (ESC)

Titanium 15-3-3-3 vs. EN 1.5410 Steel

Titanium 15-3-3-3 belongs to the titanium alloys classification, while EN 1.5410 steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is titanium 15-3-3-3 and the bottom bar is EN 1.5410 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 5.7 to 8.0
20 to 25
Fatigue Strength, MPa 610 to 710
290 to 330
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 39
73
Tensile Strength: Ultimate (UTS), MPa 1120 to 1390
560 to 620
Tensile Strength: Yield (Proof), MPa 1100 to 1340
400 to 480

Thermal Properties

Latent Heat of Fusion, J/g 390
250
Maximum Temperature: Mechanical, °C 430
400
Melting Completion (Liquidus), °C 1620
1460
Melting Onset (Solidus), °C 1560
1420
Specific Heat Capacity, J/kg-K 520
470
Thermal Conductivity, W/m-K 8.1
51
Thermal Expansion, µm/m-K 9.8
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.2
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 40
2.3
Density, g/cm3 4.8
7.8
Embodied Carbon, kg CO2/kg material 59
1.7
Embodied Energy, MJ/kg 950
22
Embodied Water, L/kg 260
49

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 78 to 89
120 to 130
Stiffness to Weight: Axial, points 12
13
Stiffness to Weight: Bending, points 32
24
Strength to Weight: Axial, points 64 to 80
20 to 22
Strength to Weight: Bending, points 50 to 57
19 to 21
Thermal Diffusivity, mm2/s 3.2
14
Thermal Shock Resistance, points 79 to 98
16 to 18

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 2.5 to 3.5
0
Carbon (C), % 0 to 0.050
0 to 0.12
Chromium (Cr), % 2.5 to 3.5
0
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
96.9 to 98.6
Manganese (Mn), % 0
1.2 to 1.8
Molybdenum (Mo), % 0
0.2 to 0.4
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.13
0
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0
0 to 0.6
Sulfur (S), % 0
0 to 0.020
Tin (Sn), % 2.5 to 3.5
0
Titanium (Ti), % 72.6 to 78.5
0
Vanadium (V), % 14 to 16
0.050 to 0.1
Residuals, % 0 to 0.4
0