MakeItFrom.com
Menu (ESC)

Titanium 15-3-3-3 vs. SAE-AISI 1108 Steel

Titanium 15-3-3-3 belongs to the titanium alloys classification, while SAE-AISI 1108 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is titanium 15-3-3-3 and the bottom bar is SAE-AISI 1108 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 5.7 to 8.0
23 to 34
Fatigue Strength, MPa 610 to 710
170 to 260
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 39
73
Shear Strength, MPa 660 to 810
250 to 280
Tensile Strength: Ultimate (UTS), MPa 1120 to 1390
380 to 440
Tensile Strength: Yield (Proof), MPa 1100 to 1340
220 to 360

Thermal Properties

Latent Heat of Fusion, J/g 390
250
Maximum Temperature: Mechanical, °C 430
400
Melting Completion (Liquidus), °C 1620
1460
Melting Onset (Solidus), °C 1560
1420
Specific Heat Capacity, J/kg-K 520
470
Thermal Conductivity, W/m-K 8.1
52
Thermal Expansion, µm/m-K 9.8
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.2
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
8.0

Otherwise Unclassified Properties

Base Metal Price, % relative 40
1.8
Density, g/cm3 4.8
7.9
Embodied Carbon, kg CO2/kg material 59
1.4
Embodied Energy, MJ/kg 950
18
Embodied Water, L/kg 260
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 78 to 89
95 to 110
Stiffness to Weight: Axial, points 12
13
Stiffness to Weight: Bending, points 32
24
Strength to Weight: Axial, points 64 to 80
13 to 16
Strength to Weight: Bending, points 50 to 57
15 to 16
Thermal Diffusivity, mm2/s 3.2
14
Thermal Shock Resistance, points 79 to 98
12 to 14

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 2.5 to 3.5
0
Carbon (C), % 0 to 0.050
0.080 to 0.13
Chromium (Cr), % 2.5 to 3.5
0
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
98.9 to 99.24
Manganese (Mn), % 0
0.6 to 0.8
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.13
0
Phosphorus (P), % 0
0 to 0.040
Sulfur (S), % 0
0.080 to 0.13
Tin (Sn), % 2.5 to 3.5
0
Titanium (Ti), % 72.6 to 78.5
0
Vanadium (V), % 14 to 16
0
Residuals, % 0 to 0.4
0