MakeItFrom.com
Menu (ESC)

Titanium 15-3-3-3 vs. N07750 Nickel

Titanium 15-3-3-3 belongs to the titanium alloys classification, while N07750 nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is titanium 15-3-3-3 and the bottom bar is N07750 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 5.7 to 8.0
25
Fatigue Strength, MPa 610 to 710
520
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 39
73
Shear Strength, MPa 660 to 810
770
Tensile Strength: Ultimate (UTS), MPa 1120 to 1390
1200
Tensile Strength: Yield (Proof), MPa 1100 to 1340
820

Thermal Properties

Latent Heat of Fusion, J/g 390
310
Maximum Temperature: Mechanical, °C 430
960
Melting Completion (Liquidus), °C 1620
1430
Melting Onset (Solidus), °C 1560
1400
Specific Heat Capacity, J/kg-K 520
460
Thermal Conductivity, W/m-K 8.1
13
Thermal Expansion, µm/m-K 9.8
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.2
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
1.5

Otherwise Unclassified Properties

Base Metal Price, % relative 40
60
Density, g/cm3 4.8
8.4
Embodied Carbon, kg CO2/kg material 59
10
Embodied Energy, MJ/kg 950
150
Embodied Water, L/kg 260
260

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 78 to 89
270
Stiffness to Weight: Axial, points 12
13
Stiffness to Weight: Bending, points 32
23
Strength to Weight: Axial, points 64 to 80
40
Strength to Weight: Bending, points 50 to 57
30
Thermal Diffusivity, mm2/s 3.2
3.3
Thermal Shock Resistance, points 79 to 98
36

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 2.5 to 3.5
0.4 to 1.0
Carbon (C), % 0 to 0.050
0 to 0.080
Chromium (Cr), % 2.5 to 3.5
14 to 17
Cobalt (Co), % 0
0 to 1.0
Copper (Cu), % 0
0 to 0.5
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
5.0 to 9.0
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0
70 to 77.7
Niobium (Nb), % 0
0.7 to 1.2
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.13
0
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.010
Tin (Sn), % 2.5 to 3.5
0
Titanium (Ti), % 72.6 to 78.5
2.3 to 2.8
Vanadium (V), % 14 to 16
0
Residuals, % 0 to 0.4
0