MakeItFrom.com
Menu (ESC)

Titanium 4-4-2 vs. 296.0 Aluminum

Titanium 4-4-2 belongs to the titanium alloys classification, while 296.0 aluminum belongs to the aluminum alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is titanium 4-4-2 and the bottom bar is 296.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
72
Elongation at Break, % 10
3.2 to 7.1
Fatigue Strength, MPa 590 to 620
47 to 70
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 42
27
Tensile Strength: Ultimate (UTS), MPa 1150 to 1250
260 to 270
Tensile Strength: Yield (Proof), MPa 1030 to 1080
120 to 180

Thermal Properties

Latent Heat of Fusion, J/g 410
420
Maximum Temperature: Mechanical, °C 310
170
Melting Completion (Liquidus), °C 1610
630
Melting Onset (Solidus), °C 1560
540
Specific Heat Capacity, J/kg-K 540
870
Thermal Conductivity, W/m-K 6.7
130 to 150
Thermal Expansion, µm/m-K 8.6
22

Otherwise Unclassified Properties

Base Metal Price, % relative 39
11
Density, g/cm3 4.7
3.0
Embodied Carbon, kg CO2/kg material 30
7.8
Embodied Energy, MJ/kg 480
150
Embodied Water, L/kg 180
1110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 120
7.6 to 15
Resilience: Unit (Modulus of Resilience), kJ/m3 4700 to 5160
110 to 220
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 34
46
Strength to Weight: Axial, points 68 to 74
24 to 25
Strength to Weight: Bending, points 52 to 55
30 to 31
Thermal Diffusivity, mm2/s 2.6
51 to 56
Thermal Shock Resistance, points 86 to 93
12

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 3.0 to 5.0
89 to 94
Carbon (C), % 0 to 0.080
0
Copper (Cu), % 0
4.0 to 5.0
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.2
0 to 1.2
Magnesium (Mg), % 0
0 to 0.050
Manganese (Mn), % 0
0 to 0.35
Molybdenum (Mo), % 3.0 to 5.0
0
Nickel (Ni), % 0
0 to 0.35
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.25
0
Silicon (Si), % 0.3 to 0.7
2.0 to 3.0
Tin (Sn), % 1.5 to 2.5
0
Titanium (Ti), % 85.8 to 92.2
0 to 0.25
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0 to 0.4
0 to 0.35