MakeItFrom.com
Menu (ESC)

Titanium 4-4-2 vs. ASTM Grade LC2-1 Steel

Titanium 4-4-2 belongs to the titanium alloys classification, while ASTM grade LC2-1 steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is titanium 4-4-2 and the bottom bar is ASTM grade LC2-1 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 10
20
Fatigue Strength, MPa 590 to 620
430
Poisson's Ratio 0.32
0.29
Reduction in Area, % 20
34
Shear Modulus, GPa 42
73
Tensile Strength: Ultimate (UTS), MPa 1150 to 1250
810
Tensile Strength: Yield (Proof), MPa 1030 to 1080
630

Thermal Properties

Latent Heat of Fusion, J/g 410
260
Maximum Temperature: Mechanical, °C 310
450
Melting Completion (Liquidus), °C 1610
1460
Melting Onset (Solidus), °C 1560
1420
Specific Heat Capacity, J/kg-K 540
470
Thermal Conductivity, W/m-K 6.7
46
Thermal Expansion, µm/m-K 8.6
13

Otherwise Unclassified Properties

Base Metal Price, % relative 39
5.0
Density, g/cm3 4.7
7.9
Embodied Carbon, kg CO2/kg material 30
1.9
Embodied Energy, MJ/kg 480
25
Embodied Water, L/kg 180
60

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 120
150
Resilience: Unit (Modulus of Resilience), kJ/m3 4700 to 5160
1040
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 34
24
Strength to Weight: Axial, points 68 to 74
29
Strength to Weight: Bending, points 52 to 55
25
Thermal Diffusivity, mm2/s 2.6
12
Thermal Shock Resistance, points 86 to 93
24

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 3.0 to 5.0
0
Carbon (C), % 0 to 0.080
0 to 0.22
Chromium (Cr), % 0
1.4 to 1.9
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.2
92.5 to 95.3
Manganese (Mn), % 0
0.55 to 0.75
Molybdenum (Mo), % 3.0 to 5.0
0.3 to 0.6
Nickel (Ni), % 0
2.5 to 3.5
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.25
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.3 to 0.7
0 to 0.5
Sulfur (S), % 0
0 to 0.045
Tin (Sn), % 1.5 to 2.5
0
Titanium (Ti), % 85.8 to 92.2
0
Residuals, % 0 to 0.4
0