MakeItFrom.com
Menu (ESC)

Titanium 4-4-2 vs. AWS E320LR

Titanium 4-4-2 belongs to the titanium alloys classification, while AWS E320LR belongs to the iron alloys. There are 20 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown.

For each property being compared, the top bar is titanium 4-4-2 and the bottom bar is AWS E320LR.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 10
34
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 42
77
Tensile Strength: Ultimate (UTS), MPa 1150 to 1250
580

Thermal Properties

Latent Heat of Fusion, J/g 410
300
Melting Completion (Liquidus), °C 1610
1410
Melting Onset (Solidus), °C 1560
1360
Specific Heat Capacity, J/kg-K 540
460
Thermal Expansion, µm/m-K 8.6
14

Otherwise Unclassified Properties

Base Metal Price, % relative 39
36
Density, g/cm3 4.7
8.2
Embodied Carbon, kg CO2/kg material 30
6.2
Embodied Energy, MJ/kg 480
87
Embodied Water, L/kg 180
220

Common Calculations

Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 34
24
Strength to Weight: Axial, points 68 to 74
20
Strength to Weight: Bending, points 52 to 55
19
Thermal Shock Resistance, points 86 to 93
15

Alloy Composition

Aluminum (Al), % 3.0 to 5.0
0
Carbon (C), % 0 to 0.080
0 to 0.030
Chromium (Cr), % 0
19 to 21
Copper (Cu), % 0
3.0 to 4.0
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.2
32.7 to 42.5
Manganese (Mn), % 0
1.5 to 2.5
Molybdenum (Mo), % 3.0 to 5.0
2.0 to 3.0
Nickel (Ni), % 0
32 to 36
Niobium (Nb), % 0
0 to 0.4
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.25
0
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0.3 to 0.7
0 to 0.3
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 1.5 to 2.5
0
Titanium (Ti), % 85.8 to 92.2
0
Residuals, % 0 to 0.4
0