MakeItFrom.com
Menu (ESC)

Titanium 4-4-2 vs. SAE-AISI 1055 Steel

Titanium 4-4-2 belongs to the titanium alloys classification, while SAE-AISI 1055 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is titanium 4-4-2 and the bottom bar is SAE-AISI 1055 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 10
11 to 14
Fatigue Strength, MPa 590 to 620
260 to 390
Poisson's Ratio 0.32
0.29
Reduction in Area, % 20
34 to 45
Shear Modulus, GPa 42
72
Shear Strength, MPa 690 to 750
440 to 450
Tensile Strength: Ultimate (UTS), MPa 1150 to 1250
730 to 750
Tensile Strength: Yield (Proof), MPa 1030 to 1080
400 to 630

Thermal Properties

Latent Heat of Fusion, J/g 410
250
Maximum Temperature: Mechanical, °C 310
400
Melting Completion (Liquidus), °C 1610
1460
Melting Onset (Solidus), °C 1560
1420
Specific Heat Capacity, J/kg-K 540
470
Thermal Conductivity, W/m-K 6.7
51
Thermal Expansion, µm/m-K 8.6
12

Otherwise Unclassified Properties

Base Metal Price, % relative 39
1.8
Density, g/cm3 4.7
7.8
Embodied Carbon, kg CO2/kg material 30
1.4
Embodied Energy, MJ/kg 480
18
Embodied Water, L/kg 180
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 120
80 to 85
Resilience: Unit (Modulus of Resilience), kJ/m3 4700 to 5160
440 to 1070
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 34
24
Strength to Weight: Axial, points 68 to 74
26
Strength to Weight: Bending, points 52 to 55
23
Thermal Diffusivity, mm2/s 2.6
14
Thermal Shock Resistance, points 86 to 93
23 to 24

Alloy Composition

Aluminum (Al), % 3.0 to 5.0
0
Carbon (C), % 0 to 0.080
0.5 to 0.6
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.2
98.4 to 98.9
Manganese (Mn), % 0
0.6 to 0.9
Molybdenum (Mo), % 3.0 to 5.0
0
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.25
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.3 to 0.7
0
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 1.5 to 2.5
0
Titanium (Ti), % 85.8 to 92.2
0
Residuals, % 0 to 0.4
0