MakeItFrom.com
Menu (ESC)

Titanium 4-4-2 vs. C19100 Copper

Titanium 4-4-2 belongs to the titanium alloys classification, while C19100 copper belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is titanium 4-4-2 and the bottom bar is C19100 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
120
Elongation at Break, % 10
17 to 37
Poisson's Ratio 0.32
0.34
Shear Modulus, GPa 42
43
Shear Strength, MPa 690 to 750
170 to 330
Tensile Strength: Ultimate (UTS), MPa 1150 to 1250
250 to 630
Tensile Strength: Yield (Proof), MPa 1030 to 1080
75 to 550

Thermal Properties

Latent Heat of Fusion, J/g 410
210
Maximum Temperature: Mechanical, °C 310
200
Melting Completion (Liquidus), °C 1610
1080
Melting Onset (Solidus), °C 1560
1040
Specific Heat Capacity, J/kg-K 540
390
Thermal Conductivity, W/m-K 6.7
250
Thermal Expansion, µm/m-K 8.6
17

Otherwise Unclassified Properties

Base Metal Price, % relative 39
33
Density, g/cm3 4.7
8.9
Embodied Carbon, kg CO2/kg material 30
2.7
Embodied Energy, MJ/kg 480
43
Embodied Water, L/kg 180
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 120
60 to 99
Resilience: Unit (Modulus of Resilience), kJ/m3 4700 to 5160
24 to 1310
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 34
18
Strength to Weight: Axial, points 68 to 74
7.7 to 20
Strength to Weight: Bending, points 52 to 55
9.9 to 18
Thermal Diffusivity, mm2/s 2.6
73
Thermal Shock Resistance, points 86 to 93
8.9 to 22

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 3.0 to 5.0
0
Carbon (C), % 0 to 0.080
0
Copper (Cu), % 0
96.5 to 98.6
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.2
0 to 0.2
Lead (Pb), % 0
0 to 0.1
Molybdenum (Mo), % 3.0 to 5.0
0
Nickel (Ni), % 0
0.9 to 1.3
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.25
0
Phosphorus (P), % 0
0.15 to 0.35
Silicon (Si), % 0.3 to 0.7
0
Tellurium (Te), % 0
0.35 to 0.6
Tin (Sn), % 1.5 to 2.5
0
Titanium (Ti), % 85.8 to 92.2
0
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0 to 0.4
0 to 0.5