MakeItFrom.com
Menu (ESC)

Titanium 4-4-2 vs. C26800 Brass

Titanium 4-4-2 belongs to the titanium alloys classification, while C26800 brass belongs to the copper alloys. There are 22 material properties with values for both materials. Properties with values for just one material (11, in this case) are not shown.

For each property being compared, the top bar is titanium 4-4-2 and the bottom bar is C26800 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Poisson's Ratio 0.32
0.31
Shear Modulus, GPa 42
40
Tensile Strength: Ultimate (UTS), MPa 1150 to 1250
310 to 650

Thermal Properties

Latent Heat of Fusion, J/g 410
180
Maximum Temperature: Mechanical, °C 310
130
Melting Completion (Liquidus), °C 1610
930
Melting Onset (Solidus), °C 1560
900
Specific Heat Capacity, J/kg-K 540
390
Thermal Conductivity, W/m-K 6.7
120
Thermal Expansion, µm/m-K 8.6
20

Otherwise Unclassified Properties

Base Metal Price, % relative 39
24
Density, g/cm3 4.7
8.1
Embodied Carbon, kg CO2/kg material 30
2.7
Embodied Energy, MJ/kg 480
45
Embodied Water, L/kg 180
320

Common Calculations

Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 34
19
Strength to Weight: Axial, points 68 to 74
11 to 22
Strength to Weight: Bending, points 52 to 55
13 to 21
Thermal Diffusivity, mm2/s 2.6
37
Thermal Shock Resistance, points 86 to 93
10 to 22

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 3.0 to 5.0
0
Carbon (C), % 0 to 0.080
0
Copper (Cu), % 0
64 to 68.5
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.2
0 to 0.050
Lead (Pb), % 0
0 to 0.15
Molybdenum (Mo), % 3.0 to 5.0
0
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.25
0
Silicon (Si), % 0.3 to 0.7
0
Tin (Sn), % 1.5 to 2.5
0
Titanium (Ti), % 85.8 to 92.2
0
Zinc (Zn), % 0
31 to 36
Residuals, % 0 to 0.4
0 to 0.3