MakeItFrom.com
Menu (ESC)

Titanium 4-4-2 vs. C65100 Bronze

Titanium 4-4-2 belongs to the titanium alloys classification, while C65100 bronze belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is titanium 4-4-2 and the bottom bar is C65100 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
120
Elongation at Break, % 10
2.4 to 50
Poisson's Ratio 0.32
0.34
Shear Modulus, GPa 42
43
Shear Strength, MPa 690 to 750
200 to 350
Tensile Strength: Ultimate (UTS), MPa 1150 to 1250
280 to 560
Tensile Strength: Yield (Proof), MPa 1030 to 1080
95 to 440

Thermal Properties

Latent Heat of Fusion, J/g 410
230
Maximum Temperature: Mechanical, °C 310
200
Melting Completion (Liquidus), °C 1610
1060
Melting Onset (Solidus), °C 1560
1030
Specific Heat Capacity, J/kg-K 540
390
Thermal Conductivity, W/m-K 6.7
57
Thermal Expansion, µm/m-K 8.6
18

Otherwise Unclassified Properties

Base Metal Price, % relative 39
30
Density, g/cm3 4.7
8.8
Embodied Carbon, kg CO2/kg material 30
2.6
Embodied Energy, MJ/kg 480
41
Embodied Water, L/kg 180
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 120
12 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 4700 to 5160
39 to 820
Stiffness to Weight: Axial, points 13
7.3
Stiffness to Weight: Bending, points 34
18
Strength to Weight: Axial, points 68 to 74
8.7 to 18
Strength to Weight: Bending, points 52 to 55
11 to 17
Thermal Diffusivity, mm2/s 2.6
16
Thermal Shock Resistance, points 86 to 93
9.5 to 19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 3.0 to 5.0
0
Carbon (C), % 0 to 0.080
0
Copper (Cu), % 0
94.5 to 99.2
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.2
0 to 0.8
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0
0 to 0.7
Molybdenum (Mo), % 3.0 to 5.0
0
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.25
0
Silicon (Si), % 0.3 to 0.7
0.8 to 2.0
Tin (Sn), % 1.5 to 2.5
0
Titanium (Ti), % 85.8 to 92.2
0
Zinc (Zn), % 0
0 to 1.5
Residuals, % 0 to 0.4
0 to 0.5