MakeItFrom.com
Menu (ESC)

Titanium 4-4-2 vs. N08031 Stainless Steel

Titanium 4-4-2 belongs to the titanium alloys classification, while N08031 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is titanium 4-4-2 and the bottom bar is N08031 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
210
Elongation at Break, % 10
45
Fatigue Strength, MPa 590 to 620
290
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 42
81
Shear Strength, MPa 690 to 750
510
Tensile Strength: Ultimate (UTS), MPa 1150 to 1250
730
Tensile Strength: Yield (Proof), MPa 1030 to 1080
310

Thermal Properties

Latent Heat of Fusion, J/g 410
310
Maximum Temperature: Mechanical, °C 310
1100
Melting Completion (Liquidus), °C 1610
1440
Melting Onset (Solidus), °C 1560
1390
Specific Heat Capacity, J/kg-K 540
460
Thermal Conductivity, W/m-K 6.7
12
Thermal Expansion, µm/m-K 8.6
18

Otherwise Unclassified Properties

Base Metal Price, % relative 39
39
Density, g/cm3 4.7
8.1
Embodied Carbon, kg CO2/kg material 30
7.1
Embodied Energy, MJ/kg 480
96
Embodied Water, L/kg 180
240

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 120
270
Resilience: Unit (Modulus of Resilience), kJ/m3 4700 to 5160
230
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 34
24
Strength to Weight: Axial, points 68 to 74
25
Strength to Weight: Bending, points 52 to 55
22
Thermal Diffusivity, mm2/s 2.6
3.1
Thermal Shock Resistance, points 86 to 93
14

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 3.0 to 5.0
0
Carbon (C), % 0 to 0.080
0 to 0.015
Chromium (Cr), % 0
26 to 28
Copper (Cu), % 0
1.0 to 1.4
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.2
29 to 36.9
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 3.0 to 5.0
6.0 to 7.0
Nickel (Ni), % 0
30 to 32
Nitrogen (N), % 0 to 0.050
0.15 to 0.25
Oxygen (O), % 0 to 0.25
0
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0.3 to 0.7
0 to 0.3
Sulfur (S), % 0
0 to 0.010
Tin (Sn), % 1.5 to 2.5
0
Titanium (Ti), % 85.8 to 92.2
0
Residuals, % 0 to 0.4
0