MakeItFrom.com
Menu (ESC)

Titanium 6-5-0.5 vs. 3005 Aluminum

Titanium 6-5-0.5 belongs to the titanium alloys classification, while 3005 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is titanium 6-5-0.5 and the bottom bar is 3005 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
70
Elongation at Break, % 6.7
1.1 to 16
Fatigue Strength, MPa 530
53 to 100
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 40
26
Shear Strength, MPa 630
84 to 150
Tensile Strength: Ultimate (UTS), MPa 1080
140 to 270
Tensile Strength: Yield (Proof), MPa 990
51 to 240

Thermal Properties

Latent Heat of Fusion, J/g 410
400
Maximum Temperature: Mechanical, °C 300
180
Melting Completion (Liquidus), °C 1610
660
Melting Onset (Solidus), °C 1560
640
Specific Heat Capacity, J/kg-K 550
900
Thermal Conductivity, W/m-K 4.2
160
Thermal Expansion, µm/m-K 9.4
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
42
Electrical Conductivity: Equal Weight (Specific), % IACS 2.1
140

Otherwise Unclassified Properties

Base Metal Price, % relative 41
9.5
Density, g/cm3 4.5
2.8
Embodied Carbon, kg CO2/kg material 33
8.2
Embodied Energy, MJ/kg 540
150
Embodied Water, L/kg 180
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 71
2.2 to 18
Resilience: Unit (Modulus of Resilience), kJ/m3 4630
18 to 390
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
49
Strength to Weight: Axial, points 67
14 to 27
Strength to Weight: Bending, points 52
21 to 33
Thermal Diffusivity, mm2/s 1.7
64
Thermal Shock Resistance, points 79
6.0 to 12

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 5.7 to 6.3
95.7 to 98.8
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 0
0 to 0.1
Copper (Cu), % 0
0 to 0.3
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.2
0 to 0.7
Magnesium (Mg), % 0
0.2 to 0.6
Manganese (Mn), % 0
1.0 to 1.5
Molybdenum (Mo), % 0.25 to 0.75
0
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.19
0
Silicon (Si), % 0 to 0.4
0 to 0.6
Titanium (Ti), % 85.6 to 90.1
0 to 0.1
Zinc (Zn), % 0
0 to 0.25
Zirconium (Zr), % 4.0 to 6.0
0
Residuals, % 0 to 0.4
0 to 0.15