MakeItFrom.com
Menu (ESC)

Titanium 6-5-0.5 vs. 6005A Aluminum

Titanium 6-5-0.5 belongs to the titanium alloys classification, while 6005A aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is titanium 6-5-0.5 and the bottom bar is 6005A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
69
Elongation at Break, % 6.7
8.6 to 17
Fatigue Strength, MPa 530
55 to 110
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 40
26
Shear Strength, MPa 630
120 to 180
Tensile Strength: Ultimate (UTS), MPa 1080
190 to 300
Tensile Strength: Yield (Proof), MPa 990
100 to 270

Thermal Properties

Latent Heat of Fusion, J/g 410
410
Maximum Temperature: Mechanical, °C 300
170
Melting Completion (Liquidus), °C 1610
650
Melting Onset (Solidus), °C 1560
600
Specific Heat Capacity, J/kg-K 550
900
Thermal Conductivity, W/m-K 4.2
180 to 190
Thermal Expansion, µm/m-K 9.4
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
47 to 50
Electrical Conductivity: Equal Weight (Specific), % IACS 2.1
150 to 170

Otherwise Unclassified Properties

Base Metal Price, % relative 41
9.5
Density, g/cm3 4.5
2.7
Embodied Carbon, kg CO2/kg material 33
8.3
Embodied Energy, MJ/kg 540
150
Embodied Water, L/kg 180
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 71
24 to 29
Resilience: Unit (Modulus of Resilience), kJ/m3 4630
76 to 530
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
50
Strength to Weight: Axial, points 67
20 to 30
Strength to Weight: Bending, points 52
27 to 36
Thermal Diffusivity, mm2/s 1.7
72 to 79
Thermal Shock Resistance, points 79
8.6 to 13

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 5.7 to 6.3
96.5 to 99.1
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 0
0 to 0.3
Copper (Cu), % 0
0 to 0.3
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.2
0 to 0.35
Magnesium (Mg), % 0
0.4 to 0.7
Manganese (Mn), % 0
0 to 0.5
Molybdenum (Mo), % 0.25 to 0.75
0
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.19
0
Silicon (Si), % 0 to 0.4
0.5 to 0.9
Titanium (Ti), % 85.6 to 90.1
0 to 0.1
Zinc (Zn), % 0
0 to 0.2
Zirconium (Zr), % 4.0 to 6.0
0
Residuals, % 0 to 0.4
0 to 0.15