MakeItFrom.com
Menu (ESC)

Titanium 6-5-0.5 vs. 6463 Aluminum

Titanium 6-5-0.5 belongs to the titanium alloys classification, while 6463 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is titanium 6-5-0.5 and the bottom bar is 6463 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
68
Elongation at Break, % 6.7
9.0 to 17
Fatigue Strength, MPa 530
45 to 76
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 40
26
Shear Strength, MPa 630
86 to 150
Tensile Strength: Ultimate (UTS), MPa 1080
140 to 230
Tensile Strength: Yield (Proof), MPa 990
82 to 200

Thermal Properties

Latent Heat of Fusion, J/g 410
400
Maximum Temperature: Mechanical, °C 300
160
Melting Completion (Liquidus), °C 1610
660
Melting Onset (Solidus), °C 1560
620
Specific Heat Capacity, J/kg-K 550
900
Thermal Conductivity, W/m-K 4.2
190 to 210
Thermal Expansion, µm/m-K 9.4
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
50 to 55
Electrical Conductivity: Equal Weight (Specific), % IACS 2.1
170 to 180

Otherwise Unclassified Properties

Base Metal Price, % relative 41
9.5
Density, g/cm3 4.5
2.7
Embodied Carbon, kg CO2/kg material 33
8.3
Embodied Energy, MJ/kg 540
150
Embodied Water, L/kg 180
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 71
17 to 25
Resilience: Unit (Modulus of Resilience), kJ/m3 4630
50 to 300
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
50
Strength to Weight: Axial, points 67
14 to 24
Strength to Weight: Bending, points 52
22 to 31
Thermal Diffusivity, mm2/s 1.7
79 to 86
Thermal Shock Resistance, points 79
6.3 to 10

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 5.7 to 6.3
97.9 to 99.4
Carbon (C), % 0 to 0.080
0
Copper (Cu), % 0
0 to 0.2
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.2
0 to 0.15
Magnesium (Mg), % 0
0.45 to 0.9
Manganese (Mn), % 0
0 to 0.050
Molybdenum (Mo), % 0.25 to 0.75
0
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.19
0
Silicon (Si), % 0 to 0.4
0.2 to 0.6
Titanium (Ti), % 85.6 to 90.1
0
Zinc (Zn), % 0
0 to 0.050
Zirconium (Zr), % 4.0 to 6.0
0
Residuals, % 0 to 0.4
0 to 0.15