MakeItFrom.com
Menu (ESC)

Titanium 6-5-0.5 vs. 7005 Aluminum

Titanium 6-5-0.5 belongs to the titanium alloys classification, while 7005 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is titanium 6-5-0.5 and the bottom bar is 7005 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
70
Elongation at Break, % 6.7
10 to 20
Fatigue Strength, MPa 530
100 to 190
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 40
26
Shear Strength, MPa 630
120 to 230
Tensile Strength: Ultimate (UTS), MPa 1080
200 to 400
Tensile Strength: Yield (Proof), MPa 990
95 to 350

Thermal Properties

Latent Heat of Fusion, J/g 410
380
Maximum Temperature: Mechanical, °C 300
200
Melting Completion (Liquidus), °C 1610
640
Melting Onset (Solidus), °C 1560
610
Specific Heat Capacity, J/kg-K 550
880
Thermal Conductivity, W/m-K 4.2
140 to 170
Thermal Expansion, µm/m-K 9.4
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
35 to 43
Electrical Conductivity: Equal Weight (Specific), % IACS 2.1
110 to 130

Otherwise Unclassified Properties

Base Metal Price, % relative 41
9.5
Density, g/cm3 4.5
2.9
Embodied Carbon, kg CO2/kg material 33
8.3
Embodied Energy, MJ/kg 540
150
Embodied Water, L/kg 180
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 71
32 to 57
Resilience: Unit (Modulus of Resilience), kJ/m3 4630
65 to 850
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 35
47
Strength to Weight: Axial, points 67
19 to 38
Strength to Weight: Bending, points 52
26 to 41
Thermal Diffusivity, mm2/s 1.7
54 to 65
Thermal Shock Resistance, points 79
8.7 to 18

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 5.7 to 6.3
91 to 94.7
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 0
0.060 to 0.2
Copper (Cu), % 0
0 to 0.1
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.2
0 to 0.4
Magnesium (Mg), % 0
1.0 to 1.8
Manganese (Mn), % 0
0.2 to 0.7
Molybdenum (Mo), % 0.25 to 0.75
0
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.19
0
Silicon (Si), % 0 to 0.4
0 to 0.35
Titanium (Ti), % 85.6 to 90.1
0.010 to 0.060
Zinc (Zn), % 0
4.0 to 5.0
Zirconium (Zr), % 4.0 to 6.0
0.080 to 0.2
Residuals, % 0 to 0.4
0 to 0.15