MakeItFrom.com
Menu (ESC)

Titanium 6-5-0.5 vs. ACI-ASTM CD3MN Steel

Titanium 6-5-0.5 belongs to the titanium alloys classification, while ACI-ASTM CD3MN steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is titanium 6-5-0.5 and the bottom bar is ACI-ASTM CD3MN steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 6.7
29
Fatigue Strength, MPa 530
340
Poisson's Ratio 0.32
0.27
Shear Modulus, GPa 40
79
Tensile Strength: Ultimate (UTS), MPa 1080
710
Tensile Strength: Yield (Proof), MPa 990
460

Thermal Properties

Latent Heat of Fusion, J/g 410
300
Maximum Temperature: Mechanical, °C 300
1060
Melting Completion (Liquidus), °C 1610
1450
Melting Onset (Solidus), °C 1560
1400
Specific Heat Capacity, J/kg-K 550
480
Thermal Conductivity, W/m-K 4.2
16
Thermal Expansion, µm/m-K 9.4
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.1
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 41
18
Density, g/cm3 4.5
7.8
Embodied Carbon, kg CO2/kg material 33
3.6
Embodied Energy, MJ/kg 540
50
Embodied Water, L/kg 180
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 71
180
Resilience: Unit (Modulus of Resilience), kJ/m3 4630
530
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 67
25
Strength to Weight: Bending, points 52
23
Thermal Diffusivity, mm2/s 1.7
4.3
Thermal Shock Resistance, points 79
20

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 5.7 to 6.3
0
Carbon (C), % 0 to 0.080
0 to 0.030
Chromium (Cr), % 0
21 to 23.5
Copper (Cu), % 0
0 to 1.0
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.2
62.6 to 71.9
Manganese (Mn), % 0
0 to 1.5
Molybdenum (Mo), % 0.25 to 0.75
2.5 to 3.5
Nickel (Ni), % 0
4.5 to 6.5
Nitrogen (N), % 0 to 0.050
0.1 to 0.3
Oxygen (O), % 0 to 0.19
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.4
0 to 1.0
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 85.6 to 90.1
0
Zirconium (Zr), % 4.0 to 6.0
0
Residuals, % 0 to 0.4
0