MakeItFrom.com
Menu (ESC)

Titanium 6-5-0.5 vs. AISI 202 Stainless Steel

Titanium 6-5-0.5 belongs to the titanium alloys classification, while AISI 202 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is titanium 6-5-0.5 and the bottom bar is AISI 202 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 6.7
14 to 45
Fatigue Strength, MPa 530
290 to 330
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 40
77
Shear Strength, MPa 630
490 to 590
Tensile Strength: Ultimate (UTS), MPa 1080
700 to 980
Tensile Strength: Yield (Proof), MPa 990
310 to 580

Thermal Properties

Latent Heat of Fusion, J/g 410
290
Maximum Temperature: Mechanical, °C 300
910
Melting Completion (Liquidus), °C 1610
1400
Melting Onset (Solidus), °C 1560
1360
Specific Heat Capacity, J/kg-K 550
480
Thermal Conductivity, W/m-K 4.2
15
Thermal Expansion, µm/m-K 9.4
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 2.1
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 41
13
Density, g/cm3 4.5
7.7
Embodied Carbon, kg CO2/kg material 33
2.8
Embodied Energy, MJ/kg 540
40
Embodied Water, L/kg 180
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 71
120 to 260
Resilience: Unit (Modulus of Resilience), kJ/m3 4630
250 to 840
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 67
25 to 35
Strength to Weight: Bending, points 52
23 to 29
Thermal Diffusivity, mm2/s 1.7
4.0
Thermal Shock Resistance, points 79
15 to 21

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 5.7 to 6.3
0
Carbon (C), % 0 to 0.080
0 to 0.15
Chromium (Cr), % 0
17 to 19
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.2
63.5 to 71.5
Manganese (Mn), % 0
7.5 to 10
Molybdenum (Mo), % 0.25 to 0.75
0
Nickel (Ni), % 0
4.0 to 6.0
Nitrogen (N), % 0 to 0.050
0 to 0.25
Oxygen (O), % 0 to 0.19
0
Phosphorus (P), % 0
0 to 0.060
Silicon (Si), % 0 to 0.4
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 85.6 to 90.1
0
Zirconium (Zr), % 4.0 to 6.0
0
Residuals, % 0 to 0.4
0