MakeItFrom.com
Menu (ESC)

Titanium 6-5-0.5 vs. AISI 301 Stainless Steel

Titanium 6-5-0.5 belongs to the titanium alloys classification, while AISI 301 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is titanium 6-5-0.5 and the bottom bar is AISI 301 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 6.7
7.4 to 46
Fatigue Strength, MPa 530
210 to 600
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 40
77
Shear Strength, MPa 630
410 to 860
Tensile Strength: Ultimate (UTS), MPa 1080
590 to 1460
Tensile Strength: Yield (Proof), MPa 990
230 to 1080

Thermal Properties

Latent Heat of Fusion, J/g 410
280
Maximum Temperature: Mechanical, °C 300
840
Melting Completion (Liquidus), °C 1610
1420
Melting Onset (Solidus), °C 1560
1400
Specific Heat Capacity, J/kg-K 550
480
Thermal Conductivity, W/m-K 4.2
16
Thermal Expansion, µm/m-K 9.4
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 2.1
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 41
13
Density, g/cm3 4.5
7.8
Embodied Carbon, kg CO2/kg material 33
2.7
Embodied Energy, MJ/kg 540
39
Embodied Water, L/kg 180
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 71
99 to 300
Resilience: Unit (Modulus of Resilience), kJ/m3 4630
130 to 2970
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 67
21 to 52
Strength to Weight: Bending, points 52
20 to 37
Thermal Diffusivity, mm2/s 1.7
4.2
Thermal Shock Resistance, points 79
12 to 31

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 5.7 to 6.3
0
Carbon (C), % 0 to 0.080
0 to 0.15
Chromium (Cr), % 0
16 to 18
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.2
70.7 to 78
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 0.25 to 0.75
0
Nickel (Ni), % 0
6.0 to 8.0
Nitrogen (N), % 0 to 0.050
0 to 0.1
Oxygen (O), % 0 to 0.19
0
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0 to 0.4
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 85.6 to 90.1
0
Zirconium (Zr), % 4.0 to 6.0
0
Residuals, % 0 to 0.4
0