MakeItFrom.com
Menu (ESC)

Titanium 6-5-0.5 vs. AISI 316 Stainless Steel

Titanium 6-5-0.5 belongs to the titanium alloys classification, while AISI 316 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is titanium 6-5-0.5 and the bottom bar is AISI 316 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 6.7
8.0 to 55
Fatigue Strength, MPa 530
210 to 430
Poisson's Ratio 0.32
0.28
Reduction in Area, % 23
80
Shear Modulus, GPa 40
78
Shear Strength, MPa 630
350 to 690
Tensile Strength: Ultimate (UTS), MPa 1080
520 to 1180
Tensile Strength: Yield (Proof), MPa 990
230 to 850

Thermal Properties

Latent Heat of Fusion, J/g 410
290
Maximum Temperature: Mechanical, °C 300
590
Melting Completion (Liquidus), °C 1610
1400
Melting Onset (Solidus), °C 1560
1380
Specific Heat Capacity, J/kg-K 550
470
Thermal Conductivity, W/m-K 4.2
15
Thermal Expansion, µm/m-K 9.4
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 2.1
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 41
19
Density, g/cm3 4.5
7.9
Embodied Carbon, kg CO2/kg material 33
3.9
Embodied Energy, MJ/kg 540
53
Embodied Water, L/kg 180
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 71
85 to 260
Resilience: Unit (Modulus of Resilience), kJ/m3 4630
130 to 1820
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 67
18 to 41
Strength to Weight: Bending, points 52
18 to 31
Thermal Diffusivity, mm2/s 1.7
4.1
Thermal Shock Resistance, points 79
11 to 26

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 5.7 to 6.3
0
Carbon (C), % 0 to 0.080
0 to 0.080
Chromium (Cr), % 0
16 to 18
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.2
62 to 72
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 0.25 to 0.75
2.0 to 3.0
Nickel (Ni), % 0
10 to 14
Nitrogen (N), % 0 to 0.050
0 to 0.1
Oxygen (O), % 0 to 0.19
0
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0 to 0.4
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 85.6 to 90.1
0
Zirconium (Zr), % 4.0 to 6.0
0
Residuals, % 0 to 0.4
0